IDNStudy.com, ang perpektong platform para magtanong at makakuha ng maaasahang mga sagot. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

An equilateral triangle is inscribed in a circle with an area equal to 144π square cm. Find the area of a triangle.



Sagot :

The geometric center of an equilateral triangle is also the center of the circumscribed circle. This means that the distance from the center of the triangle to its vertex is also the same to the radius of the circle.


The translation of the problem is that you draw a triangle inside a circle.

The circle's area is 144 cm^2. To find the radius:
A of circle =pi* radius^2
radius=sqrt (144/pi)
r=6.77 approximately

If you connect the center point of the triangle to it's vertices you will make 3 isosceles triangles. The length of the sides of the isosceles triangle are 6.77,6.77 and the unknown side. Also, the line from the center to the vertex is an angle bisector (read properties of equilateral triangles). Since equilateral triangles have interior angles that measure 60° half of that is 30°. So the measurement of the obtuse angle of the isosceles triangle is 120°. (120°+30°+30°=180°)

To find the unknown side (length of the side of the triangle) use cosine law. I'll attach a picture of the solution.
View image Januelzoe1008
View image Januelzoe1008
You could take a look at the picture
View image Ajsedo
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Patuloy na magtanong at magbahagi ng iyong mga ideya. Sama-sama tayong lumikha ng isang mas matibay na samahan. Salamat sa pagbisita sa IDNStudy.com. Bumalik ka ulit para sa mga sagot sa iyong mga katanungan.