IDNStudy.com, ang iyong mapagkukunan ng mabilis at eksaktong mga sagot. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

find the value of k so that the lines whose equations are 3x₊6ky=7 and 9x₊8y=15 are parallel.

Sagot :

to have the lines parallel they must have the same slope.
getting the slope of the second equation you'll have:
9x + 8y = 15
having it the slope-intercept form, y=mx+b where m is the slope you'll have:
8y = 15 - 9x 
y = -9x/8 + 15/8
y = (-9/8)x + 15/8
slope, m=-9/8
from the first equation 
3x + 6ky = 7
6ky = -3x + 7 
y = -3x/6k + 7/6k
the slope is (-3x)/6k
equating the slope of the two equations you'll have:
[tex] \frac{-9}{8} = \frac{3}{6k} [/tex]
cross multiply
-9(6k) = 3(8)
-54k = 24
k = -24/54
k = -4/9