Maligayang pagdating sa IDNStudy.com, ang iyong platform para sa lahat ng iyong katanungan! Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.

find the value of k so that the lines whose equations are 3x₊6ky=7 and 9x₊8y=15 are parallel.

Sagot :

to have the lines parallel they must have the same slope.
getting the slope of the second equation you'll have:
9x + 8y = 15
having it the slope-intercept form, y=mx+b where m is the slope you'll have:
8y = 15 - 9x 
y = -9x/8 + 15/8
y = (-9/8)x + 15/8
slope, m=-9/8
from the first equation 
3x + 6ky = 7
6ky = -3x + 7 
y = -3x/6k + 7/6k
the slope is (-3x)/6k
equating the slope of the two equations you'll have:
[tex] \frac{-9}{8} = \frac{3}{6k} [/tex]
cross multiply
-9(6k) = 3(8)
-54k = 24
k = -24/54
k = -4/9