Answered

IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga sagot ng eksperto. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

sand is pouring from a spout at the rate of 1 cubic meter per min. it forms a cone whose height is always one-half the radius of the base. at what rate is the height increasing when the cone is 6m high

Sagot :

since h = 1/2 r then you'll have r as:
r = 2h
note that the formula in finding the volume of a cone is defined by:
[tex]V = \frac{1}{3} \pi r^2 h[/tex]
where r in that case is 2h. then you'll have it as:
[tex]V = \frac{1}{3} \pi (2h)^2 h[/tex]
[tex]V = \frac{1}{3} \pi (4h^2) h[/tex]
[tex]V = \frac{4}{3} \pi h^3[/tex]
since you are to find the rate at which the height is increasing then you will have to differentiate the derived equivalent formula.
[tex]V = \frac{4}{3} \pi h^3[/tex]
[tex] \frac{dV}{dt} = \frac{4}{3} \pi (3h^2) \frac{dh}{dt} [/tex]
[tex] \frac{dV}{dt} = 4 \pi h^2 \frac{dh}{dt} [/tex]
substituting the given you'll have:
Given: dV/dt = 1cu.m/min
                h = 6m
[tex] \frac{dV}{dt} = 4 \pi h^2 \frac{dh}{dt} [/tex]
[tex]1 = 4 \pi (6^2) \frac{dh}{dt} [/tex]
[tex] \frac{dh}{dt} = \frac{1}{144 \pi } [/tex]
or
[tex] \frac{dh}{dt} = 0.00221 \frac{m}{min} [/tex]