Makakuha ng kaugnay na sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
[tex]1.)\\\\x^2 - 2x + 35 = 0\\\\a=1, \ \ b=-2, \ \ c=35 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{2-\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 }= \frac{2-\sqrt{4-140}}{2 }= \frac{2-\sqrt{-136}}{2 }=\\\\\frac{2-\sqrt{4*34}i}{2 }=\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1- \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]
[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]
[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Patuloy na magtanong at magbahagi ng iyong mga ideya. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.