Sumali sa IDNStudy.com at simulang makuha ang maaasahang mga sagot. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
[tex]1.)\\\\x^2 - 2x + 35 = 0\\\\a=1, \ \ b=-2, \ \ c=35 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{2-\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 }= \frac{2-\sqrt{4-140}}{2 }= \frac{2-\sqrt{-136}}{2 }=\\\\\frac{2-\sqrt{4*34}i}{2 }=\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1- \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]
[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]
[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]
[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]
Pinahahalagahan namin ang bawat tanong at sagot na iyong ibinabahagi. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.