Answered

Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

solve the following quadratic equations.
1.)x squared - 2x + 35 = 0 
2.)x squared + 2x =48
3.) 4x + 32 = -x squared


Sagot :

[tex]1.)\\\\x^2 - 2x + 35 = 0\\\\a=1, \ \ b=-2, \ \ c=35 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{2-\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 }= \frac{2-\sqrt{4-140}}{2 }= \frac{2-\sqrt{-136}}{2 }=\\\\\frac{2-\sqrt{4*34}i}{2 }=\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1- \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i[/tex]

[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{2+\sqrt{ (-2)^2-4 \cdot 1\cdot 35}}{2 } =\frac{2-2\sqrt{ 34}i}{2 }=\frac{2(1+ \sqrt{ 34}i)}{2 }=1- \sqrt{ 34}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]



[tex]2.)\\\\x^2 + 2x =48\\\\x^2 + 2x -48=0\\\\a=1, \ \ b= 2, \ \ c=-48 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-2-\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= \frac{-2-\sqrt{4+ 96}}{2 }= \frac{-2-\sqrt{100}}{2 }= \\\\=\frac{-2-10}{2 }=\frac{-12 }{2 }=-6[/tex]

[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{ 2^2-4 \cdot 1\cdot (-48)}}{2 }= =\frac{-2+10}{2 }=\frac{8 }{2 }=-4[/tex]


[tex]3.) \\\\4x + 32 = -x^2\\\\ x^2 +4x+32=0\\\\a=1, \ \ b= 4, \ \ c=32 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}= \frac{-4-\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{-4-\sqrt{16-128}}{2 }= \frac{-4-\sqrt{-112}}{2 }= \\\\=\frac{-4- \sqrt{16*7}i}{2 }= \frac{-4- 4\sqrt{ 7}i}{2 }= \frac{2(-2- 2\sqrt{ 7}i)}{2 }= -2- 2\sqrt{ 7}i[/tex]

[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{ 4^2-4 \cdot 1\cdot 32}}{2 }= \frac{2(-2+ 2\sqrt{ 7}i)}{2 }= -2+ 2\sqrt{ 7}i \\\\If\ \ b^{2}-4ac<0, \ then \ roots \ are \ imaginary \ (non-real)[/tex]