Answered

Makahanap ng mga eksaktong solusyon sa iyong mga problema gamit ang IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

pwede po ba ako hingi ng favor ano po ba ang sagot sa x squared - 9 over 9 x squared - 1 divided by x-3 over 3x+1
 please po allergic talaga ako sa math hhehehe.....


Sagot :

[tex] \frac{ x^{2 - 9} }{9 x^{2} - 1} / \frac{x - 3}{3x + 1} [/tex]

Verify ko muna yan ba ang equation?
Kung yan nga ito solution. :)

[tex] \frac{(x+3) (x-3)}{(3x + 1) (3x - 1)} * \frac{(3x + 1) }{(x-3)} = \frac{x+3}{3x -1} [/tex]
[tex] \frac{ x^{2 }-9 }{9 x^{2} - 1} : \frac{x - 3}{3x + 1}= \\\\9x^2-1\neq 0 \ \ and \ \ 3x+1 \neq 0 \ \ and\ \ x-3\neq 0 \\ \\ (3x-1)(3x+1)\neq 0 \ \ and \ \ 3x \neq -1 \ \ and\ \ x \neq 3\\\\3x-1 \neq 0 \ \ and \ \3x+1 \neq 0 \ \ and \ \ 3x \neq -1 \ \ and\ \ x \neq 3\\\\3x \neq 1 \ \ and \ \3x \neq -1 \ \ and \ \ 3x \neq- \frac{ 1}{3} \ \ and\ \ x \neq 3\\\\ x \neq\frac{ 1}{3} \ \ and \ \ x \neq -\frac{1}{3} \ \ and \ \ 3x \neq- \frac{ 1}{3} \ \ and\ \ x \neq 3 [/tex]

[tex]D=R\setminus \left \{ -\frac{1}{3},\frac{1}{3},3 \right \}\\\\\\\frac{ x^{2 }-9 }{9 x^{2} - 1} : \frac{x - 3}{3x + 1}=\frac{( x-3)(x+3) }{(3 x - 1)(3x+1)} \cdot \frac{3x + 1}{x - 3}=\frac{x+3}{3x-1}[/tex]