Suriin ang IDNStudy.com para sa mabilis at maaasahang mga solusyon. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

What can be the possible maxima and minima values of the quadratic equation?y=x²-6x+29 

Sagot :

[tex]Let \ y \ be \ a \ quadratic \ function \ with \ standard \ form : \\\\ y=a(x-h)^2 + k \\\\vertex(h, k) \\ The \ maximum \ or \ minimum \ value \ of \ y \ occurs \ at \ x=h\\\\If \ a>0 , \ then \ the \ minimum \ value \ of \ y \ is \ y(h)=k \\If \ a< 0 , \ then \ the \ maximu \ value \ of \ y \ is \ y(h)=k[/tex]

[tex]y=x^2-6x+29 =\\\\=(x^2-6x +3^2-3^2)+29=\\\\=(x^2-6x +3^2)-3^2+29=\\\\=(x^2-6x + 9)-9+29=\\\\=(x-3)^2+20[/tex]

[tex]The \ standard \ form \ is: \\\\ y=(x-3)^2+20[/tex]

The graph is a parabola that has its vertex at (h,k)= (3,20) and a> 0 opens  upward

[tex]Since \ the \ coefficient \ of \ x^2 \ is \ positive, \ y \ has \ a \ minimum \ value \\\\ The \ minimum \ value \ is : \ \ y(3) =20[/tex]



View image Riza1