Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.

What can be the possible maxima and minima values of the quadratic equation?y=x²-6x+29 

Sagot :

[tex]Let \ y \ be \ a \ quadratic \ function \ with \ standard \ form : \\\\ y=a(x-h)^2 + k \\\\vertex(h, k) \\ The \ maximum \ or \ minimum \ value \ of \ y \ occurs \ at \ x=h\\\\If \ a>0 , \ then \ the \ minimum \ value \ of \ y \ is \ y(h)=k \\If \ a< 0 , \ then \ the \ maximu \ value \ of \ y \ is \ y(h)=k[/tex]

[tex]y=x^2-6x+29 =\\\\=(x^2-6x +3^2-3^2)+29=\\\\=(x^2-6x +3^2)-3^2+29=\\\\=(x^2-6x + 9)-9+29=\\\\=(x-3)^2+20[/tex]

[tex]The \ standard \ form \ is: \\\\ y=(x-3)^2+20[/tex]

The graph is a parabola that has its vertex at (h,k)= (3,20) and a> 0 opens  upward

[tex]Since \ the \ coefficient \ of \ x^2 \ is \ positive, \ y \ has \ a \ minimum \ value \\\\ The \ minimum \ value \ is : \ \ y(3) =20[/tex]



View image Riza1