Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.
Sagot :
[tex]Let \ y \ be \ a \ quadratic \ function \ with \ standard \ form : \\\\ y=a(x-h)^2 + k \\\\vertex(h, k) \\ The \ maximum \ or \ minimum \ value \ of \ y \ occurs \ at \ x=h\\\\If \ a>0 , \ then \ the \ minimum \ value \ of \ y \ is \ y(h)=k \\If \ a< 0 , \ then \ the \ maximu \ value \ of \ y \ is \ y(h)=k[/tex]
[tex]y=x^2-6x+29 =\\\\=(x^2-6x +3^2-3^2)+29=\\\\=(x^2-6x +3^2)-3^2+29=\\\\=(x^2-6x + 9)-9+29=\\\\=(x-3)^2+20[/tex]
[tex]The \ standard \ form \ is: \\\\ y=(x-3)^2+20[/tex]
The graph is a parabola that has its vertex at (h,k)= (3,20) and a> 0 opens upward
[tex]Since \ the \ coefficient \ of \ x^2 \ is \ positive, \ y \ has \ a \ minimum \ value \\\\ The \ minimum \ value \ is : \ \ y(3) =20[/tex]
[tex]y=x^2-6x+29 =\\\\=(x^2-6x +3^2-3^2)+29=\\\\=(x^2-6x +3^2)-3^2+29=\\\\=(x^2-6x + 9)-9+29=\\\\=(x-3)^2+20[/tex]
[tex]The \ standard \ form \ is: \\\\ y=(x-3)^2+20[/tex]
The graph is a parabola that has its vertex at (h,k)= (3,20) and a> 0 opens upward
[tex]Since \ the \ coefficient \ of \ x^2 \ is \ positive, \ y \ has \ a \ minimum \ value \\\\ The \ minimum \ value \ is : \ \ y(3) =20[/tex]

Maraming salamat sa iyong presensya. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mga de-kalidad na sagot, piliin ang IDNStudy.com. Salamat at bumalik ka ulit sa aming site.