Magtanong at makakuha ng malinaw na mga sagot sa IDNStudy.com. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

What can be the possible maxima and minima values of the quadratic equation?y=x²-6x+29 

Sagot :

[tex]Let \ y \ be \ a \ quadratic \ function \ with \ standard \ form : \\\\ y=a(x-h)^2 + k \\\\vertex(h, k) \\ The \ maximum \ or \ minimum \ value \ of \ y \ occurs \ at \ x=h\\\\If \ a>0 , \ then \ the \ minimum \ value \ of \ y \ is \ y(h)=k \\If \ a< 0 , \ then \ the \ maximu \ value \ of \ y \ is \ y(h)=k[/tex]

[tex]y=x^2-6x+29 =\\\\=(x^2-6x +3^2-3^2)+29=\\\\=(x^2-6x +3^2)-3^2+29=\\\\=(x^2-6x + 9)-9+29=\\\\=(x-3)^2+20[/tex]

[tex]The \ standard \ form \ is: \\\\ y=(x-3)^2+20[/tex]

The graph is a parabola that has its vertex at (h,k)= (3,20) and a> 0 opens  upward

[tex]Since \ the \ coefficient \ of \ x^2 \ is \ positive, \ y \ has \ a \ minimum \ value \\\\ The \ minimum \ value \ is : \ \ y(3) =20[/tex]



View image Riza1