IDNStudy.com, ang iyong mapagkukunan para sa mga sagot ng eksperto. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

What can be the possible maxima and minima values of the quadratic equation?y=x²-6x+29 

Sagot :

[tex]Let \ y \ be \ a \ quadratic \ function \ with \ standard \ form : \\\\ y=a(x-h)^2 + k \\\\vertex(h, k) \\ The \ maximum \ or \ minimum \ value \ of \ y \ occurs \ at \ x=h\\\\If \ a>0 , \ then \ the \ minimum \ value \ of \ y \ is \ y(h)=k \\If \ a< 0 , \ then \ the \ maximu \ value \ of \ y \ is \ y(h)=k[/tex]

[tex]y=x^2-6x+29 =\\\\=(x^2-6x +3^2-3^2)+29=\\\\=(x^2-6x +3^2)-3^2+29=\\\\=(x^2-6x + 9)-9+29=\\\\=(x-3)^2+20[/tex]

[tex]The \ standard \ form \ is: \\\\ y=(x-3)^2+20[/tex]

The graph is a parabola that has its vertex at (h,k)= (3,20) and a> 0 opens  upward

[tex]Since \ the \ coefficient \ of \ x^2 \ is \ positive, \ y \ has \ a \ minimum \ value \\\\ The \ minimum \ value \ is : \ \ y(3) =20[/tex]



View image Riza1