Makakuha ng mga sagot sa iyong mga pinakamahahalagang tanong sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

The area of a garden is 160 meter squared. Suppose the length of the garden is 3 meters more than twice its width. What is the length of the garden?

Sagot :

Given on the problem are the following: A (Area), L( Length) and W (Width)

                             [tex]A = 160[/tex]

                             [tex]L = 2W + 3[/tex]

- The formula in finding the Area is :
                                   
                             [tex]A = L x W[/tex]

- Substitute L:

                           [tex]A = (2W + 3) W[/tex]

                           [tex]160 = 2W^{2} + 3W[/tex]

                           [tex] 2W^{2} +3W -160 = 0[/tex] 

-Solve using quadratic equation:

                           [tex] ax^{2}+ bx + c = 0 [/tex]

- To solve for x ( which is the W)

                             [tex]x = \frac{-b \sqrt{ b^{2}-4ac } }{2a } \\ \\ x = \frac{-3 \sqrt{ (3)^{2}-4(2)(-160) } }{2(2) } \\ \\ x = \frac{-3 \sqrt{ 9+1280 } }{4 } \\ \\ x = \frac{-3 \sqrt{ 1289 } }{4 } \\ \\ x = \frac{-3 + 35.90 }{4 } or \frac{-3 - 35.90 }{4 } \\ \\ x = 8.225 or-9.725 [/tex]

- The Width is the positive value of x so:

                      [tex]W = 8.225 m [/tex]

- The Length is:

                       [tex]L = 2(8.225)+3 [/tex]
                       [tex]L = 19.45 m[/tex]