Sumali sa IDNStudy.com at makakuha ng maraming kaalaman. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

The area of a garden is 160 meter squared. Suppose the length of the garden is 3 meters more than twice its width. What is the length of the garden?

Sagot :

Given on the problem are the following: A (Area), L( Length) and W (Width)

                             [tex]A = 160[/tex]

                             [tex]L = 2W + 3[/tex]

- The formula in finding the Area is :
                                   
                             [tex]A = L x W[/tex]

- Substitute L:

                           [tex]A = (2W + 3) W[/tex]

                           [tex]160 = 2W^{2} + 3W[/tex]

                           [tex] 2W^{2} +3W -160 = 0[/tex] 

-Solve using quadratic equation:

                           [tex] ax^{2}+ bx + c = 0 [/tex]

- To solve for x ( which is the W)

                             [tex]x = \frac{-b \sqrt{ b^{2}-4ac } }{2a } \\ \\ x = \frac{-3 \sqrt{ (3)^{2}-4(2)(-160) } }{2(2) } \\ \\ x = \frac{-3 \sqrt{ 9+1280 } }{4 } \\ \\ x = \frac{-3 \sqrt{ 1289 } }{4 } \\ \\ x = \frac{-3 + 35.90 }{4 } or \frac{-3 - 35.90 }{4 } \\ \\ x = 8.225 or-9.725 [/tex]

- The Width is the positive value of x so:

                      [tex]W = 8.225 m [/tex]

- The Length is:

                       [tex]L = 2(8.225)+3 [/tex]
                       [tex]L = 19.45 m[/tex]


Ang iyong presensya ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan at pagkatuto. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.