IDNStudy.com, ang iyong gabay para sa mga sagot ng eksperto. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

The area of a garden is 160 meter squared. Suppose the length of the garden is 3 meters more than twice its width. What is the length of the garden?

Sagot :

Given on the problem are the following: A (Area), L( Length) and W (Width)

                             [tex]A = 160[/tex]

                             [tex]L = 2W + 3[/tex]

- The formula in finding the Area is :
                                   
                             [tex]A = L x W[/tex]

- Substitute L:

                           [tex]A = (2W + 3) W[/tex]

                           [tex]160 = 2W^{2} + 3W[/tex]

                           [tex] 2W^{2} +3W -160 = 0[/tex] 

-Solve using quadratic equation:

                           [tex] ax^{2}+ bx + c = 0 [/tex]

- To solve for x ( which is the W)

                             [tex]x = \frac{-b \sqrt{ b^{2}-4ac } }{2a } \\ \\ x = \frac{-3 \sqrt{ (3)^{2}-4(2)(-160) } }{2(2) } \\ \\ x = \frac{-3 \sqrt{ 9+1280 } }{4 } \\ \\ x = \frac{-3 \sqrt{ 1289 } }{4 } \\ \\ x = \frac{-3 + 35.90 }{4 } or \frac{-3 - 35.90 }{4 } \\ \\ x = 8.225 or-9.725 [/tex]

- The Width is the positive value of x so:

                      [tex]W = 8.225 m [/tex]

- The Length is:

                       [tex]L = 2(8.225)+3 [/tex]
                       [tex]L = 19.45 m[/tex]