IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga maaasahang sagot. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

The area of a garden is 160 meter squared. Suppose the length of the garden is 3 meters more than twice its width. What is the length of the garden?

Sagot :

Given on the problem are the following: A (Area), L( Length) and W (Width)

                             [tex]A = 160[/tex]

                             [tex]L = 2W + 3[/tex]

- The formula in finding the Area is :
                                   
                             [tex]A = L x W[/tex]

- Substitute L:

                           [tex]A = (2W + 3) W[/tex]

                           [tex]160 = 2W^{2} + 3W[/tex]

                           [tex] 2W^{2} +3W -160 = 0[/tex] 

-Solve using quadratic equation:

                           [tex] ax^{2}+ bx + c = 0 [/tex]

- To solve for x ( which is the W)

                             [tex]x = \frac{-b \sqrt{ b^{2}-4ac } }{2a } \\ \\ x = \frac{-3 \sqrt{ (3)^{2}-4(2)(-160) } }{2(2) } \\ \\ x = \frac{-3 \sqrt{ 9+1280 } }{4 } \\ \\ x = \frac{-3 \sqrt{ 1289 } }{4 } \\ \\ x = \frac{-3 + 35.90 }{4 } or \frac{-3 - 35.90 }{4 } \\ \\ x = 8.225 or-9.725 [/tex]

- The Width is the positive value of x so:

                      [tex]W = 8.225 m [/tex]

- The Length is:

                       [tex]L = 2(8.225)+3 [/tex]
                       [tex]L = 19.45 m[/tex]