Sumali sa IDNStudy.com at makakuha ng mga sagot ng eksperto. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.

Example 2: Find the 30th term of an arithmetic sequence if
the 5th term is-10 and the common difference is 6.


Sagot :

Answer:

Finding the 30th Term of an Arithmetic Sequence

Understanding the Problem

We're given:

* The 5th term (a₅) is -10

* The common difference (d) is 6

We need to find the 30th term (a₃₀).

Solution

1. Find the first term (a₁):

We can use the formula for the nth term of an arithmetic sequence:

* aₙ = a₁ + (n - 1)d

Substituting the given values:

* -10 = a₁ + (5 - 1)6

* -10 = a₁ + 24

* a₁ = -34

2. Find the 30th term (a₃₀):

Using the same formula:

* a₃₀ = -34 + (30 - 1)6

* a₃₀ = -34 + 174

* a₃₀ = 140

Therefore, the 30th term of the arithmetic sequence is 140.