Makakuha ng mga sagot mula sa komunidad at mga eksperto sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad.
Sagot :
Answer:
- The distance from (F) to {SCHOOL} (d_{FS} is 8 km
- The distance between the two points Brother walked between (which we assumed to be (F) and (G) is 4 km
Step-by-step explanation:
Given Information:
[tex]{ - \text{ (Total distance Brother walked} \(d_{BB}\): \(8 \, \text{km}}[/tex]
[tex]- {\text{(Total distance Sister walked} \(d_{SS}\): \(20 \, \text{km}}[/tex]
[tex]{- Distance from \: \(F\) \: to \ \: (\text{SCHOOL}\) \: and \: back \: (\(2 \times d_{FS}\)) \: is \: a \: part \: of \: Sister's \: total \: distance.} [/tex]
Step-by-Step Solution:
1. Brother's total distance (back and forth) is twice the distance between two points:
[tex]{2 \times d_{BB} = 8 \, \text{km} \implies d_{BB} = \frac{8}{2} = 4 \, \text{km}}[/tex]
The distance between the two points
[tex] \text{(we will assume these are} (F) and (G) \: is \: (4 , \text{km}\).[/tex]
2. Sister's Journey:
For Sister, the total distance walked is:
[tex] {d_{FS} + d_{FS} + d_{FG} = 20 \, \text{km} \implies 2d_{FS} + d_{FG} = 20 \, \text{km}}[/tex]
[tex] {\text{We already know from Brother's journey that} \(d_{FG} = 4 \, \text{km}}[/tex]
3. Substituting (d_{FG} into the equation:
[tex]2d_{FS} + 4 \, \text{km} = 20 \, \text{km}[/tex]
[tex]2d_{FS} = 20 \, \text{km} - 4 \, \text{km} = 16 \, \text{km}[/tex]
[tex]d_{FS} = \frac{16}{2} = 8 \, \text{km}[/tex]
Salamat sa iyong presensya. Patuloy na magtanong at magbahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.