IDNStudy.com, ang iyong gabay para sa mga sagot ng eksperto. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
Answer:
To find the sum of all odd numbers from 1 to 101, you can use the formula for the sum of an arithmetic series. Here's a step-by-step approach:
1. **Identify the Series**: The series of odd numbers from 1 to 101 is: \( 1, 3, 5, \ldots, 101 \).
2. **Find the Number of Terms**: The common difference \( d \) is 2. To find the number of terms (\( n \)), use the formula for the nth term of an arithmetic series:
\[
a_n = a + (n - 1)d
\]
where \( a \) is the first term (1), \( d \) is the common difference (2), and \( a_n \) is the last term (101). Setting up the equation:
\[
101 = 1 + (n - 1) \cdot 2
\]
Solving for \( n \):
\[
101 = 1 + 2n - 2
\]
\[
101 = 2n - 1
\]
\[
102 = 2n
\]
\[
n = 51
\]
3. **Calculate the Sum**: The sum \( S_n \) of an arithmetic series is given by:
\[
S_n = \frac{n}{2} \cdot (a + l)
\]
where \( a \) is the first term, \( l \) is the last term, and \( n \) is the number of terms. Substituting the values:
\[
S_{51} = \frac{51}{2} \cdot (1 + 101)
\]
\[
S_{51} = \frac{51}{2} \cdot 102
\]
\[
S_{51} = 51 \cdot 51
\]
\[
S_{51} = 2601
\]
So, the sum of all odd numbers from 1 to 101 is \( 2601 \).
Salamat sa iyong kontribusyon. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtatagumpay sa ating layunin. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.