Makakuha ng mga maaasahang sagot sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.
1. Determine the intersection points of the curves:
- Solve y = x^2 and y + 2x = 8 simultaneously to find the intersection points.
- Substituting y = x^2 into y + 2x = 8 gives x^2 + 2x = 8.
- Rearrange the equation to x^2 + 2x - 8 = 0 and solve for x to find the x-coordinates of the intersection points.
2. Set up the integral for the centroid:
- The formula for the centroid of a solid of revolution about the y-axis is given by:
\bar{x} = \frac{\int_{a}^{b} x*f(x) dx}{\int_{a}^{b} f(x) dx}
- In this case, f(x) represents the radius of the solid at a distance x from the y-axis.
3. Calculate the centroid:
- Integrate the x-coordinate of the centroid with respect to x over the bounds of the region to find the centroid.