Makakuha ng maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.
1. Determine the intersection points of the curves:
- Solve y = x^2 and y + 2x = 8 simultaneously to find the intersection points.
- Substituting y = x^2 into y + 2x = 8 gives x^2 + 2x = 8.
- Rearrange the equation to x^2 + 2x - 8 = 0 and solve for x to find the x-coordinates of the intersection points.
2. Set up the integral for the centroid:
- The formula for the centroid of a solid of revolution about the y-axis is given by:
\bar{x} = \frac{\int_{a}^{b} x*f(x) dx}{\int_{a}^{b} f(x) dx}
- In this case, f(x) represents the radius of the solid at a distance x from the y-axis.
3. Calculate the centroid:
- Integrate the x-coordinate of the centroid with respect to x over the bounds of the region to find the centroid.