Answered

Sumali sa IDNStudy.com at tuklasin ang komunidad ng pagbabahagi ng kaalaman. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

Kindly, solve this equations with simple solutions, so that I will understand. Thank you!
[tex]2 x^{2}-9x+9/ x^{2} -6x+9

x^{3}+y^{3}+x+y/ x^{2} -xy+y^{2}+1[/tex]


Sagot :

[tex] \frac{(2x-3)(x-3)}{(x-3)(x-3)} = \frac{2x-3}{x-3} [/tex]

[tex] \frac{x^{3}+y^{3}+x+y}{x^{2}-xy+y^{2}+1} = \frac{(x^{3}+y^{3})+(x+y)}{x^{2}-xy+y^{2}+1} = \frac{(x+y)(x^2-xy+y^{2})+(x+y)}{x^{2}-xy+y^{2}+1}[/tex]
[tex]= \frac{(x+y)[(x^2-xy+y^{2})+1]}{x^{2}-xy+y^{2}+1} = x+y[/tex]
[tex]1.)\frac{2x^{2}-9x+9}{ x^{2}-6x+9} \ \ \ \ \ \ \ Solution;\ \ \ \frac{2x^{2}-9x+9}{ x^{2}-6x+9}\to \frac{(2x-3(x-3)}{(x-3)(x-3)}\to\boxed{ \frac{2x-3}{x-3}} \\ \\ \\ \\ 2.) \frac{x^{3}+y^{3}+x+y}{x^{2}-xy+y^{2}+1} \ \ \ \ Solution; \ \ \ \frac{(x^{3}+y^{3})+(x+y)}{x^{2}-xy+y^{2}+1}\to \frac{(x+y)(x^{2}-xy+y^{2})+(x+y)}{x^{2}-xy+y^{2}+1} \\ \\ .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{(x+y)[(x^{2}-xy+y^{2}+1)]}{{x^{2}-xy+y^{2}+1}}\to\boxed{x+y} [/tex]

[tex]Hope\ it\ Helps:) \\ Domini[/tex]