Makakuha ng mga sagot sa iyong mga tanong mula sa komunidad ng IDNStudy.com. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.
Answer:
To find the sum of an arithmetic series, you can use the formula:
\[ \text{Sum} = \frac{n}{2} \times (a_1 + a_n) \]
where:
- \( \text{Sum} \) is the sum of the series,
- \( n \) is the number of terms in the series,
- \( a_1 \) is the first term, and
- \( a_n \) is the last term.
In this case, the series is:
\[ 60 + 91 + 122 + 153 + 184 \]
The first term, \( a_1 \), is 60, the last term, \( a_n \), is 184, and there are 5 terms in total. So, \( n = 5 \).
Plugging these values into the formula:
\[ \text{Sum} = \frac{5}{2} \times (60 + 184) \]
\[ \text{Sum} = \frac{5}{2} \times 244 \]
\[ \text{Sum} = \frac{5}{2} \times 244 \]
\[ \text{Sum} = \frac{5 \times 244}{2} \]
\[ \text{Sum} = \frac{1220}{2} \]
\[ \text{Sum} = 610 \]
So, the sum of the series is 610.