IDNStudy.com, ang iyong platform ng sanggunian para sa malinaw na mga sagot. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.
Answer:
To find the sum of an arithmetic series, you can use the formula:
\[ \text{Sum} = \frac{n}{2} \times (a_1 + a_n) \]
where:
- \( \text{Sum} \) is the sum of the series,
- \( n \) is the number of terms in the series,
- \( a_1 \) is the first term, and
- \( a_n \) is the last term.
In this case, the series is:
\[ 60 + 91 + 122 + 153 + 184 \]
The first term, \( a_1 \), is 60, the last term, \( a_n \), is 184, and there are 5 terms in total. So, \( n = 5 \).
Plugging these values into the formula:
\[ \text{Sum} = \frac{5}{2} \times (60 + 184) \]
\[ \text{Sum} = \frac{5}{2} \times 244 \]
\[ \text{Sum} = \frac{5}{2} \times 244 \]
\[ \text{Sum} = \frac{5 \times 244}{2} \]
\[ \text{Sum} = \frac{1220}{2} \]
\[ \text{Sum} = 610 \]
So, the sum of the series is 610.