Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.
Sagot :
[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]
[tex]\bullet \: \: \rm{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]
[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]
Solve the equation the limit using L'Hospital's rule.
[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]
Hi, Brainly User! Let me help you finding the limit ^^
1) Solve the limit below using [tex]\tt{ \purple{L'Hopital's \: rule}}[/tex]:
[tex]\tt{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]
2) We can use L'Hopital's rule if, when evaluated, the limit is of the form 0/0, of +/- inf/inf:
[tex]\tt{Which \: states \: that:}[/tex]
[tex]\small{\boxed{ \bm{{ \red{\lim_{{x \to \infty}} \dfrac{{f(x)}}{{g(x)}} = \lim_{{x \to \infty}} \dfrac{{f'(x)}}{{g'(x)}}}}}}}[/tex]
Therefore, we have:
[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{{2x + 3}}{{4x + 5}} }[/tex]
3) Once again, when evaluated, the limit has the form inf/inf; thus, we can use L'Hopital's rule a second time:
[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{2}{4} =\large {\purple{ \frac{1}{2}}} }[/tex]
Final Answer:
Hence, the limit is equal to [tex]\rm{\purple{\dfrac{1}{2}}}[/tex].
Answer:
It seems there was an error in running the code using L'Hopital's rule for the given limit. Let's manually solve the limit using L'Hopital's rule step by step.
- Click the image
Step-by-step explanation:
Sana makatulong. Pa follow then pa brainliest answer po! Tysm, God bless ❤️
# Carry on learning ✨

Salamat sa iyong presensya. Patuloy na magtanong at magbahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!