IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
[tex]\underline{\underline{\large{\red{\mathcal{✒GIVEN:}}}}}[/tex]
[tex]\bullet \: \: \rm{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]
[tex]\underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}}[/tex]
Solve the equation the limit using L'Hospital's rule.
[tex]\underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}}[/tex]
Hi, Brainly User! Let me help you finding the limit ^^
1) Solve the limit below using [tex]\tt{ \purple{L'Hopital's \: rule}}[/tex]:
[tex]\tt{\lim_{{x \to \infty}} \dfrac{{x^2 + 3x + 2}}{{2x^2 + 5x + 3}}}[/tex]
2) We can use L'Hopital's rule if, when evaluated, the limit is of the form 0/0, of +/- inf/inf:
[tex]\tt{Which \: states \: that:}[/tex]
[tex]\small{\boxed{ \bm{{ \red{\lim_{{x \to \infty}} \dfrac{{f(x)}}{{g(x)}} = \lim_{{x \to \infty}} \dfrac{{f'(x)}}{{g'(x)}}}}}}}[/tex]
Therefore, we have:
[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{{2x + 3}}{{4x + 5}} }[/tex]
3) Once again, when evaluated, the limit has the form inf/inf; thus, we can use L'Hopital's rule a second time:
[tex]\tt{\implies \lim_{{x \to \infty}} \frac{{ {x}^{2} + 3x + 2}}{{ {2x}^{2} + 5x + 3}} = \lim_{{x \to \infty}} \frac{2}{4} =\large {\purple{ \frac{1}{2}}} }[/tex]
Final Answer:
Hence, the limit is equal to [tex]\rm{\purple{\dfrac{1}{2}}}[/tex].
Answer:
It seems there was an error in running the code using L'Hopital's rule for the given limit. Let's manually solve the limit using L'Hopital's rule step by step.
- Click the image
Step-by-step explanation:
Sana makatulong. Pa follow then pa brainliest answer po! Tysm, God bless ❤️
# Carry on learning ✨
Pinahahalagahan namin ang bawat ambag mo. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.