IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
The number of terms in the arithmetic progression is 5.
Step-by-step explanation:
1. Given Information:
- The first term of the arithmetic progression (AP) is 3.
- The fifth term of the AP is 9.
2. Finding the Common Difference:
- We use the formula for the \( n \)-th term of an AP: \( a_n = a + (n-1)d \), where \( a \) is the first term, \( d \) is the common difference, and \( n \) is the term number.
- Since \( a = 3 \) and \( a_5 = 9 \), we substitute these values into the formula to find \( d \).
- \( a_5 = a + 4d \)
- \( 9 = 3 + 4d \)
- Solving for \( d \), we get \( d = \frac{9 - 3}{4} = \frac{6}{4} = 1.5 \).
3. Finding the Number of Terms:
- We want to find the number of terms in the progression. Let's denote it as \( n \).
- We use the formula for the \( n \)-th term again: \( a_n = a + (n-1)d \).
- Since we know the last term of the progression (which we'll assume is 9), we set \( a_n = 9 \) and solve for \( n \).
- \( 9 = 3 + (n-1) \times 1.5 \)
- Solving for \( n \), we get \( n = 5 \).
4. Conclusion:
- The number of terms in the arithmetic progression is 5.
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Para sa mga de-kalidad na sagot, piliin ang IDNStudy.com. Salamat at bumalik ka ulit sa aming site.