Makakuha ng mga payo ng eksperto at detalyadong mga sagot sa IDNStudy.com. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
The number of terms in the arithmetic progression is 5.
Step-by-step explanation:
1. Given Information:
- The first term of the arithmetic progression (AP) is 3.
- The fifth term of the AP is 9.
2. Finding the Common Difference:
- We use the formula for the \( n \)-th term of an AP: \( a_n = a + (n-1)d \), where \( a \) is the first term, \( d \) is the common difference, and \( n \) is the term number.
- Since \( a = 3 \) and \( a_5 = 9 \), we substitute these values into the formula to find \( d \).
- \( a_5 = a + 4d \)
- \( 9 = 3 + 4d \)
- Solving for \( d \), we get \( d = \frac{9 - 3}{4} = \frac{6}{4} = 1.5 \).
3. Finding the Number of Terms:
- We want to find the number of terms in the progression. Let's denote it as \( n \).
- We use the formula for the \( n \)-th term again: \( a_n = a + (n-1)d \).
- Since we know the last term of the progression (which we'll assume is 9), we set \( a_n = 9 \) and solve for \( n \).
- \( 9 = 3 + (n-1) \times 1.5 \)
- Solving for \( n \), we get \( n = 5 \).
4. Conclusion:
- The number of terms in the arithmetic progression is 5.
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.