Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.
Sagot :
Arithmetic sequence:
[tex]a _{n} = a _{1} + (n-1)(d) [/tex]
Where:
[tex]n [/tex] = number of terms (nth term) ⇒ 25
[tex]a _{n} [/tex] = last term in the sequence ⇒ unknown
[tex]a _{1} [/tex] = first term in the sequence ⇒ 3
d = common difference (difference between any two consecutive terms in the sequence)
d = 4
Solution:
[tex]a _{25} [/tex] = 3 + (25-1) (4)
[tex]a _{25} [/tex] = 3 + (24)(4)
[tex]a _{25} [/tex] = 3 + 96
[tex]a _{25} [/tex] = 99
ANSWER: The 25th term in the sequence is 99.
[tex]a _{n} = a _{1} + (n-1)(d) [/tex]
Where:
[tex]n [/tex] = number of terms (nth term) ⇒ 25
[tex]a _{n} [/tex] = last term in the sequence ⇒ unknown
[tex]a _{1} [/tex] = first term in the sequence ⇒ 3
d = common difference (difference between any two consecutive terms in the sequence)
d = 4
Solution:
[tex]a _{25} [/tex] = 3 + (25-1) (4)
[tex]a _{25} [/tex] = 3 + (24)(4)
[tex]a _{25} [/tex] = 3 + 96
[tex]a _{25} [/tex] = 99
ANSWER: The 25th term in the sequence is 99.
Ang iyong kontribusyon ay mahalaga sa amin. Patuloy na magtanong at magbahagi ng iyong kaalaman. Sama-sama nating palawakin ang ating komunidad ng karunungan at pagkatuto. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.