Kumonekta sa mga eksperto at makakuha ng mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.
Sagot :
✏️CIRCLES
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{ANSWERS:}}[/tex]
[tex] \qquad\Large\rm» \:\: 1. \: \green{m \angle A = 45 \degree} [/tex]
[tex] \qquad\Large\rm» \:\: 2. \: \green{m \angle A = 25 \degree} [/tex]
[tex] \qquad\Large\rm» \:\: 3. \: \green{m\overset{\frown}{BC} = 80\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 4. \: \green{m\angle{BOC} = 110\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 5. \: \green{m\angle{C} = 140\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 6. \: \green{m\angle{C} = 35\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 7. \: \green{m\angle{B} = 15\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 8. \: \green{m\angle{B} = 60\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 9. \: \green{m\angle{C} = 20\degree} [/tex]
[tex] \qquad\Large\rm» \:\: 10. \: \green{m\overset{\frown}{AC} = 120 \degree} [/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
[tex]\underline{\mathbb{SOLUTIONS:}}[/tex]
#1. Find the measure of inscribed angle A that intercept the arc BC measuring 90°.
- [tex] \rm m \angle A= \frac{1}{2}(90 \degree) \\ [/tex]
- [tex] \rm m \angle A = 45 \degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#2. Find the measure of inscribed angle A that intercept the arc BC measuring 50°.
- [tex] \rm m \angle A= \frac{1}{2}(50\degree) \\ [/tex]
- [tex] \rm m \angle A = 25\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#3. Find the measure of arc BC that is twice the measure of inscribed angle A.
- [tex] \rm m\overset{\frown}{BC} = 2(40\degree) [/tex]
- [tex] \rm m\overset{\frown}{BC} = 80\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#4. Solve for the measure of arc BC that is twice the measure of inscribed angle A.
- [tex] \rm m\overset{\frown}{BC} = 2(55\degree) [/tex]
- [tex] \rm m\overset{\frown}{BC} = 110\degree[/tex]
» The measure of the central angle BOC is as same as the measure of its intercepted arc BC.
- [tex] \rm m\angle{BOC} = 110\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#5. The two opposite angles of a quadrilateral are supplementary.
- [tex] \rm m\angle{C} + 40 \degree = 180\degree[/tex]
- [tex] \rm m\angle{C} = 180\degree - 40 \degree[/tex]
- [tex] \rm m\angle{C} = 140 \degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#6. Find the measure of intercepted arc BC that is twice the measure of inscribed angle A.
- [tex] \rm m\overset{\frown}{BC} = 2(55\degree) [/tex]
- [tex] \rm m\overset{\frown}{BC} = 110\degree[/tex]
» Arc ABC is a semicircle, then arc AB and BC are supplementary.
- [tex] \rm m\overset{\frown}{AB} + 110\degree = 180\degree [/tex]
- [tex] \rm m\overset{\frown}{AB} = 180\degree - 110\degree[/tex]
- [tex] \rm m\overset{\frown}{AB} = 70\degree[/tex]
» Find the measure of inscribed angle C that intercept the arc AB measuring 70°.
- [tex] \rm m \angle C = \frac{1}{2} (70\degree) \\ [/tex]
- [tex] \rm m \angle C = 35\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#7. Arc ACB is a semicircle, then arc AC and CB are supplementary.
- [tex] \rm m\overset{\frown}{AC} + 150 \degree = 180\degree [/tex]
- [tex] \rm m\overset{\frown}{AC} = 180\degree - 150 \degree[/tex]
- [tex] \rm m\overset{\frown}{AC} = 30 \degree[/tex]
» Find the measure of inscribed angle B that intercept the arc measuring 30°.
- [tex] \rm m \angle B = \frac{1}{2} (30\degree) \\ [/tex]
- [tex] \rm m \angle B = 15\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#8. The two opposite angles of a quadrilateral are supplementary.
- [tex] \rm m\angle{B} + 120\degree = 180\degree[/tex]
- [tex] \rm m\angle{B} = 180\degree - 120\degree[/tex]
- [tex] \rm m\angle{B} = 60\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#9. Find the measure of intercepted arc BC that is twice the measure of inscribed angle A.
- [tex] \rm m\overset{\frown}{BC} = 2(70\degree) [/tex]
- [tex] \rm m\overset{\frown}{BC} = 140 \degree[/tex]
» Arc ABC is a semicircle, then arc AB and BC are supplementary.
- [tex] \rm m\overset{\frown}{AB} + 140\degree = 180\degree [/tex]
- [tex] \rm m\overset{\frown}{AB} = 180\degree - 140\degree[/tex]
- [tex] \rm m\overset{\frown}{AB} = 40\degree[/tex]
» Find the measure of inscribed angle C that intercept the arc AB measuring 40°.
- [tex] \rm m \angle C = \frac{1}{2} (40\degree) \\ [/tex]
- [tex] \rm m \angle C = 20\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#10. Find the measure of intercepted arc CB that is twice the measure of inscribed angle A.
- [tex] \rm m\overset{\frown}{CB} = 2(30\degree) [/tex]
- [tex] \rm m\overset{\frown}{CB} = 60\degree[/tex]
[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]
#CarryOnLearning
Maraming salamat sa iyong kontribusyon. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.