IDNStudy.com, ang iyong mapagkukunan para sa malinaw at mabilis na mga sagot. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.
Sagot :
✒️EQUATION
[tex] \small \boxed{\begin{array}{l} \textsf{Find the equation of the circle passes through} \\ \textsf{the points of intersection of the circles}\\ \sf x^2 + y^2 = 5, x^2 + y^2 - x + y = 4\textsf{ and through} \\ \textsf{the point (-2,3).}\end{array}} [/tex]
[tex]\small\begin{array}{|c|c} \hline\bold{Given:}\begin{cases} \: \textsf{Points of intersection of} \\ \: \sf x^2 + y^2 = 5; \\ \: \sf x^2 + y^2 - x + y = 4\ \ \&; \\ \: \sf (-2, 3) \end{cases} \\ \\ \bold{Required:}\ \textsf{Equation of the circle} \\ \\ \textsf{First, solve for the points of intersection of the} \\ \textsf{two given circles.} \\ \\ \begin{array}{l} \sf x^2 + y^2 = 5 & \sf (1) \\ \sf x^2 + y^2 - x + y = 4 & \sf (2)\end{array} \\ \\ \textsf{Subtracting (2) from (1), we get} \\\\ \sf x - y = 1 \implies y = x - 1 \quad (3) \\ \\ \textsf{Substitute (3) to (1) then solve for x.} \\ \\ \begin{array}{c} \sf x^2 + (x - 1)^2 = 5 \\ \sf x^2 + x^2 - 2x + 1 = 5 \\ \sf 2x^2 - 2x - 4 = 0 \\ \sf x^2 - x - 2 = 0 \\ \sf (x + 1)(x - 2) = 0 \end{array} \\ \\ \begin{array}{c|c} \sf x + 1 = 0 & \sf x - 2 = 0 \\ \sf x = - 1 & \sf x = 2 \\ \\ \sf y = x - 1 & \: \\ \\ \sf y = - 1 - 1 & \sf y = 2 - 1 \\ \sf y = -2 & \sf y = 1 \end{array} \\ \\ \textsf{Points of intersection:}\: \sf \{(-1, -2), (2, 1)\} \\\hline\end{array} [/tex]
[tex] \small\begin{array}{|c|c}\hline \textsf{Using the general form of the equation of the} \\ \quad \:\:\textsf{circle } \sf x^2 + y^2 + Ax + By + C = 0, \\ \\ \sf \underline{\textsf{At }(-1,-2)}, \\ \\ \sf (-1)^2 + (-2)^2 - A - 2B + C = 0 \\ \sf A + 2B - C = 5\quad (1) \\ \\ \sf \underline{\textsf{At }(2, 1),} \\ \\ \sf 2^2 + 1^2 + 2A + B + C = 0 \\ \sf 2A + B + C = -5 \quad(2) \\ \\ \sf \underline{\textsf{At }(-2, 3)}, \\ \\ \sf (-2)^2 + 3^2 - 2A + 3B + C = 0 \\ \sf 2A - 3B - C = 13\quad(3) \\ \\ \sf \textsf{Now, solve the simultaneous equations.} \\ \\ \sf Adding\ (1)\textsf{ and }(2),\textsf{we get} \\ \\ \begin{aligned} \sf A + 2B - C &=\sf 5 \\ \sf +\quad 2A +\:\:B + C&= \sf-5\\ \hline \sf 3A \:+\: 3B\: \quad \:\: &= \sf 0 \end{aligned} \\ \quad \:\:\:\sf A + B = 0 \implies A = - B \\ \\ \textsf{Substitute }\sf A = - B \textsf{ to (1) and (3) then solve for} \\ \textsf{B and C.}\\ \\ \begin{array}{c c} \sf A + 2B - C = 5 & \sf (1) \\ \sf -B + 2B - C = 5 & \: \sf \\ \sf B - C = 5 & \: \sf (4) \\ \\ \sf 2A - 3B - C = 5 & \sf (2)\\ \sf -2B - 3B - C = 13 & \: \\ \sf -5B - C = 13 & \: \\ \sf 5B + C = -13 & \sf (5) \end{array} \\ \\ \textsf{Adding (4) and (5) implies} \\ \\ \sf 6B = -8 \implies B = -\dfrac{4}{3}, so\ A = \dfrac{4}{3}\\ \\ \textsf{Substituting the value of B to (4), we get} \\ \\ \sf -\dfrac{4}{3} - C = 5 \implies C = -\dfrac{19}{3} \\ \\ \textsf{Plug in the values of A, B, and C to the general} \\ \textsf{equation of the circle.} \\ \\ \textsf{Therefore, the equation of the circle is} \\ \qquad\red{\boxed{\sf x^2 + y^2 + \dfrac{4}{3}x - \dfrac{4}{3}x - \dfrac{19}{3} = 0}} \\ \hline\end{array} [/tex]
#CarryOnLearning
#BrainlyForTrees
[tex]\qquad\qquad\qquad\qquad\qquad\qquad\tt{fri \: 04-01-2022} \\ \qquad\qquad\qquad\qquad\qquad\qquad\tt{1:56 \: pm}[/tex]
Ang iyong kontribusyon ay mahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. IDNStudy.com ang iyong mapagkakatiwalaang kasama para sa lahat ng iyong mga katanungan. Bisitahin kami palagi.