Tuklasin kung paano ka matutulungan ng IDNStudy.com na makuha ang mga sagot na kailangan mo. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

find the equation of the circles between x²+y²=5, x²+y²-x+y=4 and (-2,3).






Sagot :

✒️EQUATION

[tex] \small \boxed{\begin{array}{l} \textsf{Find the equation of the circle passes through} \\ \textsf{the points of intersection of the circles}\\ \sf x^2 + y^2 = 5, x^2 + y^2 - x + y = 4\textsf{ and through} \\ \textsf{the point (-2,3).}\end{array}} [/tex]

[tex]\small\begin{array}{|c|c} \hline\bold{Given:}\begin{cases} \: \textsf{Points of intersection of} \\ \: \sf x^2 + y^2 = 5; \\ \: \sf x^2 + y^2 - x + y = 4\ \ \&; \\ \: \sf (-2, 3) \end{cases} \\ \\ \bold{Required:}\ \textsf{Equation of the circle} \\ \\ \textsf{First, solve for the points of intersection of the} \\ \textsf{two given circles.} \\ \\ \begin{array}{l} \sf x^2 + y^2 = 5 & \sf (1) \\ \sf x^2 + y^2 - x + y = 4 & \sf (2)\end{array} \\ \\ \textsf{Subtracting (2) from (1), we get} \\\\ \sf x - y = 1 \implies y = x - 1 \quad (3) \\ \\ \textsf{Substitute (3) to (1) then solve for x.} \\ \\ \begin{array}{c} \sf x^2 + (x - 1)^2 = 5 \\ \sf x^2 + x^2 - 2x + 1 = 5 \\ \sf 2x^2 - 2x - 4 = 0 \\ \sf x^2 - x - 2 = 0 \\ \sf (x + 1)(x - 2) = 0 \end{array} \\ \\ \begin{array}{c|c} \sf x + 1 = 0 & \sf x - 2 = 0 \\ \sf x = - 1 & \sf x = 2 \\ \\ \sf y = x - 1 & \: \\ \\ \sf y = - 1 - 1 & \sf y = 2 - 1 \\ \sf y = -2 & \sf y = 1 \end{array} \\ \\ \textsf{Points of intersection:}\: \sf \{(-1, -2), (2, 1)\} \\\hline\end{array} [/tex]

[tex] \small\begin{array}{|c|c}\hline \textsf{Using the general form of the equation of the} \\ \quad \:\:\textsf{circle } \sf x^2 + y^2 + Ax + By + C = 0, \\ \\ \sf \underline{\textsf{At }(-1,-2)}, \\ \\ \sf (-1)^2 + (-2)^2 - A - 2B + C = 0 \\ \sf A + 2B - C = 5\quad (1) \\ \\ \sf \underline{\textsf{At }(2, 1),} \\ \\ \sf 2^2 + 1^2 + 2A + B + C = 0 \\ \sf 2A + B + C = -5 \quad(2) \\ \\ \sf \underline{\textsf{At }(-2, 3)}, \\ \\ \sf (-2)^2 + 3^2 - 2A + 3B + C = 0 \\ \sf 2A - 3B - C = 13\quad(3) \\ \\ \sf \textsf{Now, solve the simultaneous equations.} \\ \\ \sf Adding\ (1)\textsf{ and }(2),\textsf{we get} \\ \\ \begin{aligned} \sf A + 2B - C &=\sf 5 \\ \sf +\quad 2A +\:\:B + C&= \sf-5\\ \hline \sf 3A \:+\: 3B\: \quad \:\: &= \sf 0 \end{aligned} \\ \quad \:\:\:\sf A + B = 0 \implies A = - B \\ \\ \textsf{Substitute }\sf A = - B \textsf{ to (1) and (3) then solve for} \\ \textsf{B and C.}\\ \\ \begin{array}{c c} \sf A + 2B - C = 5 & \sf (1) \\ \sf -B + 2B - C = 5 & \: \sf \\ \sf B - C = 5 & \: \sf (4) \\ \\ \sf 2A - 3B - C = 5 & \sf (2)\\ \sf -2B - 3B - C = 13 & \: \\ \sf -5B - C = 13 & \: \\ \sf 5B + C = -13 & \sf (5) \end{array} \\ \\ \textsf{Adding (4) and (5) implies} \\ \\ \sf 6B = -8 \implies B = -\dfrac{4}{3}, so\ A = \dfrac{4}{3}\\ \\ \textsf{Substituting the value of B to (4), we get} \\ \\ \sf -\dfrac{4}{3} - C = 5 \implies C = -\dfrac{19}{3} \\ \\ \textsf{Plug in the values of A, B, and C to the general} \\ \textsf{equation of the circle.} \\ \\ \textsf{Therefore, the equation of the circle is} \\ \qquad\red{\boxed{\sf x^2 + y^2 + \dfrac{4}{3}x - \dfrac{4}{3}x - \dfrac{19}{3} = 0}} \\ \hline\end{array} [/tex]

#CarryOnLearning

#BrainlyForTrees

[tex]\qquad\qquad\qquad\qquad\qquad\qquad\tt{fri \: 04-01-2022} \\ \qquad\qquad\qquad\qquad\qquad\qquad\tt{1:56 \: pm}[/tex]