IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga solusyon. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

Complete the given ordered pairs so that each is a solution of the given equation.

A. 3x + 5y = 15
(?, 3) (5, ?) (?, -3)

B. 5x - 4y = -16
(0, ?) (4, ?) (?, 14)

C. 3x - y = 3
(?, 0) (? 3) (1, ?)

Complete solution po dapat. Report ko kung hindi. ​


Sagot :

LINEAR EQUATIONS

Answer:

A. Linear Pair (3x + 5y = 15)

  1. (0,3)
  2. (5,0)
  3. (10, -3)

B. Linear Pair (5x - 4y = -16)

  1. (0,4)
  2. (4,9)
  3. (8,14)

C. Linear Pair (3x - y = 3)

  1. (1,0)
  2. (2,3)
  3. (1,0)

Step-by-step explanation:

Substitute the given values in order to find the missing terms in the given linear equations.

A. Linear Pair (3x + 5y = 15)

1. (_,3) y = 3

  • [tex]3x + 5y = 15[/tex]

  • [tex]3x + 5(3) = 15[/tex]

  • [tex]3x + 15 = 15[/tex]

  • [tex]3x = 15 - 15[/tex]

  • [tex] \frac{ \cancel3x}{ \cancel3} = \frac{0}{3} [/tex]

  • [tex]x = 0[/tex]

2. (5,_) x = 5

  • [tex]3x + 5y = 15[/tex]

  • [tex]3(5) + 5y = 15[/tex]

  • [tex]15 + 5y = 15[/tex]

  • [tex]5y = 15 - 15[/tex]

  • [tex] \frac{ \cancel5y}{ \cancel5} = \frac{0}{5} [/tex]

  • [tex]y = 0[/tex]

3. (_, -3) y = -3

  • [tex]3x + 5y = 15[/tex]

  • [tex]3x + 5( - 3) = 15[/tex]

  • [tex]3x - 15 = 15[/tex]

  • [tex]3x = 15 + 15[/tex]

  • [tex] \frac{\cancel3x}{\cancel3} = \frac{30}{3} [/tex]

  • [tex]x = 10[/tex]

B. Linear Pair (5x - 4y = -16)

1. (0,_) x = 0

  • [tex]5x - 4y = - 16[/tex]

  • [tex]5(0) - 4y = - 16[/tex]

  • [tex]0 - 4y = - 16[/tex]

  • [tex] - 4y = - 16 + 0[/tex]

  • [tex] \frac{ \cancel{- 4}y}{ \cancel{- 4}} = \frac{ - 16}{ - 4} [/tex]

  • [tex]y = 4[/tex]

2. (4,_) x = 4

  • [tex]5x - 4y = - 16[/tex]

  • [tex]5(4) - 4y = - 16[/tex]

  • [tex]20 - 4y = - 16[/tex]

  • [tex] - 4y = - 16 - 20[/tex]

  • [tex] - 4y = - 36[/tex]

  • [tex] \frac{ \cancel{- 4}y}{ \cancel{- 4}} = \frac{ - 36}{ - 4} [/tex]

  • [tex]y = 9[/tex]

3. (_,14) y = 14

  • [tex]5x - 4y = - 16[/tex]

  • [tex]5x - 4(14) = - 16[/tex]

  • [tex]5x - 56 = - 16[/tex]

  • [tex]5x = - 16 + 56[/tex]

  • [tex] \frac{ \cancel{ 5}x}{ \cancel{5}} = \frac{ 40}{ 5} [/tex]

  • [tex]x = 8[/tex]

C. Linear Pair (3x - y = 3)

1. (_,0) y = 0

  • [tex]3x - y = 3[/tex]

  • [tex]3x - 0 = 3[/tex]

  • [tex]3x = 3 + 0[/tex]

  • [tex] \frac{ \cancel3x}{ \cancel3} = \frac{3}{3} [/tex]

  • [tex]x = 1[/tex]

2. (_,3) y = 3

  • [tex]3x - y = 3[/tex]

  • [tex]3x - 3 = 3[/tex]

  • [tex]3x = 3 + 3[/tex]

  • [tex] \frac{ \cancel3x}{ \cancel3} = \frac{6}{3} [/tex]

  • [tex]x = 2[/tex]

3. (1,_) x = 1

  • [tex]3(1) - y = 3[/tex]

  • [tex]3 - y = 3[/tex]

  • [tex] - y = 3 - 3[/tex]

  • [tex] \frac{ \cancel{-1 }y}{ \cancel{- 1}} = \frac{0}{ - 1} [/tex]

  • [tex]y = 0[/tex]