Sumali sa IDNStudy.com at tuklasin ang komunidad ng pagbabahagi ng kaalaman. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.
Sagot :
Answer:
5,040
Step-by-step explanation:
This problem is about indistinguishable permutation. We have indistinguishable objects, in this case, these are the letter of the word ELLIPSES. The permutations for the word ELLIPSES is the same when you swap the places of the Ls. We need to not count them to avoid double counting.
We first count how many letters we have on the word, and then count the repeating letters.
ELLIPSES has 8 letters, 2 Es, 2Ls, and 2S.
The formula for indistinguishable permutation is
[tex]\frac{n!}{n_{1}!n_{2}!...n_{k}! }[/tex]
where n is the total number of objects and [tex]n_{k}[/tex] are the number of indistinguishable objects.
We have 2Es, 2Ls, and 2S; the formula then becomes:
[tex]= \frac{8!}{2!2!2!}\\[/tex]
Simplifying gives us
[tex]= \frac{8!}{2!2!2!}\\\\= \frac{8*7*6*5*4*3*2*1}{2*2*2}\\\\= 8*7*6*5*3\\\\= 5,040[/tex]
There are 5,040 distinguishable permutations of the word ELLIPSES.
For more information about indistinguishable permutations, click here
https://brainly.ph/question/2487180
https://brainly.ph/question/2479274
https://brainly.ph/question/2470260
https://brainly.ph/question/2470259
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Ang IDNStudy.com ay nangako na sasagutin ang lahat ng iyong mga tanong. Salamat at bisitahin kami palagi.