Answered

IDNStudy.com, ang iyong mapagkukunan ng mabilis at eksaktong mga sagot. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.

determine the domain and the range of the (x+1) y=1

Sagot :

(x + 1) y = 1

Solution:
Step 1:  Isolate y to -re-write the expression as function, y = f(x)

[tex] \frac{(x+1)y}{x+1} = \frac{1}{x+1} [/tex]

f(x) = [tex] \frac{1}{x+1} [/tex]

Step 2: Solve for domain.

x + 1 = 0
x - 1 = 0 - 1
x = -1

Since x + 1 is the denominator of [tex] \frac{1}{x+1} [/tex], when -1 is substituted to denominator x + 1 ⇒  (-1) + 1 = 0.  

Note that in any rational expression, denominator can not be 0, because it will render the expression 'undefined".

Therefore:
Domain = {x/x ≠  -1)
              =  x < -1,   x > -1   
              = {-2, -3, -4,...}  and  {0, 1, 2, 3, ...}

Interval Notation   (⁻∞, -1) U (-1, ⁺∞)

Step 3:  Solve for range
Remember that the range is the combined domain of its inverse functions.

f⁻¹(x) = -1 + 1/x
f⁻¹(x) = [tex] \frac{1-x}{x} [/tex]
Find the value of denominator x:
x = 0

Again, if the denominator is equal to 0, the rational expression is undefined.
Therefore:

Range = {y/y ≠0}
            =  y < 0,  y > 0    
            = {-1, -2, -3, ...}  and  {1, 2, 3, ...}

Interval Notation:   (⁻∞, 0)  U  (0, ⁺∞)