Answered

IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman. Magtanong ng anumang bagay at makatanggap ng detalyadong sagot mula sa aming komunidad ng mga eksperto.

determine the domain and the range of the (x+1) y=1

Sagot :

(x + 1) y = 1

Solution:
Step 1:  Isolate y to -re-write the expression as function, y = f(x)

[tex] \frac{(x+1)y}{x+1} = \frac{1}{x+1} [/tex]

f(x) = [tex] \frac{1}{x+1} [/tex]

Step 2: Solve for domain.

x + 1 = 0
x - 1 = 0 - 1
x = -1

Since x + 1 is the denominator of [tex] \frac{1}{x+1} [/tex], when -1 is substituted to denominator x + 1 ⇒  (-1) + 1 = 0.  

Note that in any rational expression, denominator can not be 0, because it will render the expression 'undefined".

Therefore:
Domain = {x/x ≠  -1)
              =  x < -1,   x > -1   
              = {-2, -3, -4,...}  and  {0, 1, 2, 3, ...}

Interval Notation   (⁻∞, -1) U (-1, ⁺∞)

Step 3:  Solve for range
Remember that the range is the combined domain of its inverse functions.

f⁻¹(x) = -1 + 1/x
f⁻¹(x) = [tex] \frac{1-x}{x} [/tex]
Find the value of denominator x:
x = 0

Again, if the denominator is equal to 0, the rational expression is undefined.
Therefore:

Range = {y/y ≠0}
            =  y < 0,  y > 0    
            = {-1, -2, -3, ...}  and  {1, 2, 3, ...}

Interval Notation:   (⁻∞, 0)  U  (0, ⁺∞)