✒️CONGRUENCE
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{ANSWER}:} [/tex]
[tex] \qquad \Large \:\: \rm 1) \; x = 25 \;,\; y = 2 [/tex]
[tex] \qquad \Large \:\: \rm 2) \; x = 12 \;,\; y = 6 [/tex]
*Please read and understand my solution. Don't just rely on my direct answer*
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]
Number 1:
Angle B corresponds to angle M. Thus, their measures are equal. Solve for x.
- [tex] \rm m \angle B = m\angle M [/tex]
- [tex] 2x - 20 = 30 [/tex]
- [tex] 2x = 30 + 20 [/tex]
- [tex] \frac{2x}2 = \frac{50}2 \\ [/tex]
Side AC corresponds to side LN. Thus, their lengths are equal. Solve for y.
- [tex] \frac{\,6\,}3 = \frac{3y}3 \\ [/tex]
Therefore, the value of x is 25 and the value of y is 2.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
Number 2:
Angle C corresponds to angle N. Thus, their measures are equal. Solve for x.
- [tex] \rm m \angle C = m\angle N [/tex]
- [tex] \frac{60}5 = \frac{5x}5 \\ [/tex]
Side AB corresponds to side LM. Thus, their lengths are equal. Solve for y.
- [tex] 7y - 8 = 2y + 22 [/tex]
- [tex] 7y - 2y = 22 + 8 [/tex]
- [tex] \frac{5y}5 = \frac{30}5 \\ [/tex]
Therefore, the value of x is 12 and the value of 6 is 2.
[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]
(ノ^_^)ノ [tex] \large\qquad\qquad\qquad\tt 3 /1 /2022 [/tex]