Makahanap ng mabilis na mga solusyon sa iyong mga problema sa IDNStudy.com. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.
Answer:
252.
Step-by-step explanation:
Order is not important because answering problem 1,2,3,4 and 5 is the same as answering problems 4,3,5,2 and 1. Since the order is not important, we use combination. The formula for taking r things from n possible ones with no order is expressed by.
\frac{n!}{n!(n-r)!}
n!(n−r)!
n!
We have 5 items to choose from 10 possible problems, so r = 5, n = 10. Substituting it to the formula and simplifying gives us:
\begin{gathered}=\frac{10!}{5!(10-5)!}\\\\=\frac{10!}{5!5!}\\ \\=\frac{10*9*8*7*6*5!}{5*4*3*2*1*5!}\\ \\=3*2*7*6\\\\=252\end{gathered}
=
5!(10−5)!
10!
=
5!5!
10!
=
5∗4∗3∗2∗1∗5!
10∗9∗8∗7∗6∗5!
=3∗2∗7∗6
=252
There are 252 ways to select 5 problems from 10 possible problems.