IDNStudy.com, ang iyong mapagkukunan ng mabilis at eksaktong mga sagot. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

find the roots by completing the square then check:
1.m^2+7m-51/4=0
2.w^2+6w-11=0


Sagot :

[tex]m^2+7m- \frac{51}{4}=0 [/tex]
[tex]m^2+7m= \frac{51}{4} [/tex]
[tex]m^2+7m+( \frac{7}{2})^2= \frac{51}{4}+ ( \frac{7}{2} )^2[/tex]
[tex]\sqrt{(m+ \frac{7}{2})^2 }= +or-\sqrt{ \frac{100}{4} }[/tex]
[tex]m+ \frac{7}{2}= +or- \frac{10}{2} [/tex]
[tex]m= \frac{10}{2}- \frac{7}{2} [/tex]
[tex]m= \frac{3}{2} [/tex]
[tex]m=- \frac{10}{2}- \frac{7}{2} [/tex]
[tex]m=- \frac{17}{2} [/tex]

Check:
[tex]m= \frac{3}{2} [/tex]
[tex]( \frac{3}{2})^2+7( \frac{3}{2})- \frac{51}{4}=0 [/tex]
[tex] \frac{9}{4}+ \frac{21}{2}- \frac{51}{4} =0[/tex]
[tex] \frac{51}{4} - \frac{51}{4}=0 [/tex]
[tex]0=0[/tex]

[tex]m= -\frac{17}{2} [/tex]
[tex]( -\frac{17}{2})^2+7( -\frac{17}{2})- \frac{51}{4}=0 [/tex]
[tex] \frac{289}{4}- \frac{119}{2}- \frac{51}{4}=0 [/tex]
[tex] \frac{51}{4}- \frac{51}{4} =0[/tex]
[tex]0=0[/tex]

[tex]w^2+6w-11=0[/tex]
[tex]w^2+6w=11[/tex]
[tex]w^2+6w+(3)^2=11+(3)^2[/tex]
[tex] \sqrt{(w+3)^2}= \sqrt{20} [/tex]
[tex]w+3=+or- \sqrt{20} [/tex]
[tex]w=+or- \sqrt{20}-3 [/tex]
[tex] \left \{ {{w= \sqrt{20}-3 } \atop {w= -\sqrt{20}-3 }} \right. [/tex]

(In checking you can just use a scientific calculator... Just substitute the variables with the given value...) ^_^ \/