Answer:
[tex]x_{1} =1+\sqrt{7}\\ x_{2}=1-\sqrt{7}[/tex]
Step-by-step explanation:
- Expand the left side of the equation, then move constant from the right to the left. It will form a quadratic equation.
[tex]3s(s-2)=12\\3s^2-6s=12\\3s^2-6s-12=0[/tex] - Try to simplify the equation by finding the common factor.
[tex]3s^2-6s-12=0\\3(s^2-2s-6)=0\\s^2-2s-6=0\\[/tex] - Use the quadratic formula to find the values of s.
[tex]x=\frac{-b±\sqrt{b^2-4ac} }{2a}\\x=\frac{-(-2)±\sqrt{(-2)^2-4(1)(-6)} }{2(1)}\\\\x=\frac{2±\sqrt{4+24} }{2}\\\\x=\frac{2±\sqrt{28} }{2}\\\\x=\frac{2±2\sqrt{7} }{2} \\x=\frac{2(1±\sqrt{7}) }{2} \\x=1±\sqrt{7}[/tex]