IDNStudy.com, kung saan ang mga eksperto ay sumasagot sa iyong mga tanong. Ang aming komunidad ay narito upang magbigay ng detalyadong sagot sa lahat ng iyong mga katanungan.

•••••••••••••••••••••••••••••••••••
PA HELP PO TYTY!

NONSENSE REPORT! ;)
•••••••••••••••••••••••••••••••••••••​


PA HELP PO TYTYNONSENSE REPORT class=

Sagot :

✒️CIRCLE

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \LARGE\:\:\rm{20\sqrt{21} \: meters} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Label the given points as capital letters.

  • A = Main Road
  • B = Gate 2
  • D = Exit
  • E = Gate 1

» Indicate The center of the park as C. Since BD is the diameter of the park measuring 50m, then the radius is 25m.

  • [tex] CB = 25 [/tex]
  • [tex] CD = 25 [/tex]

» Draw a radius from C to gate 1 (E) that is also 25m in measure.

  • [tex] CE = 25 [/tex]

» Since CE is perpendicular to AE, then ∆CEA is a right triangle. Solve for AE using the Pythagorean theorem.

  • [tex] (A E)^2 + (C E)^2 = (C A)^2 [/tex]

  • [tex] (A E)^2 + (C E)^2 = (C B + B A)^2 [/tex]

  • [tex] (A E)^2 + (25)^2 = (25 + 70)^2 [/tex]
  • [tex] (A E)^2 + 625 = (95)^2 [/tex]

  • [tex] (A E)^2 = 9025 - 625 [/tex]

  • [tex] (A E)^2 = 8400 [/tex]

  • [tex] \sqrt{(A E)^2} = \sqrt{8400} [/tex]

  • [tex] A E = 20\sqrt{21} [/tex]

[tex] \therefore [/tex] The distance between the Main Road tó Gate 1 is 20√21 meters

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

View image KAntoineDoix