Makahanap ng mga eksaktong solusyon sa iyong mga problema gamit ang IDNStudy.com. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.

Write the following in their general form and identify the vertex of the graph

1. f(x)=(x+3) ²+6
2. f(x) = -2(x+5)²+9
3. f(x)=-(x-7) ²- 2​


Sagot :

✒️ QUADRATIC FUNC.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{DIRECTIONS}:} [/tex]

» Write the following in their general form and identify the vertex of the graph.

  • 1. f(x) = (x+3)² + 6
  • 2. f(x) = -2(x+5)² + 9
  • 3. f(x)= -(x-7)² - 2

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

General Form:

[tex] \qquad \large \: \rm 1) \; f(x) = x^2 + 6x + 15 [/tex]

[tex] \qquad \large \: \rm 2) \; f(x) = \text-2x^2 - 20x - 41 [/tex]

[tex] \qquad \large \: \rm 3) \; f(x) = \text-x^2 + 14x - 51 [/tex]

Vertices:

[tex] \qquad \large \: \rm 1) \; (\text-3,6) [/tex]

[tex] \qquad \large \: \rm 2) \; (\text-5,9) [/tex]

[tex] \qquad \large \: \rm 3) \; (7,\text-2) [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Since the quadratic function is already in vertex form, we can find its vertex as (h, k).

  • [tex] f(x) = a(x - h)^2 + k [/tex]

» After taking the values of h and k, we can now rearrange the function in general form.

  • [tex] f(x) = ax^2 + bx + c [/tex]

[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]

Number 1:

» Since h is -3 and k is 6, then the vertex of the parabola is at (-3, 6). Now rearrange it in general form.

  • [tex] f(x) = (x + 3)^2 + 6 [/tex]

  • [tex] f(x) = x^2 + 6x + 9 + 6 [/tex]

  • [tex] f(x) = x^2 + 6x + 15 [/tex]

[tex] \therefore [/tex] f(x) = + 6x + 15 is the general form of the given quadratic function.

[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]

Number 2:

» Since h is -5 and k is 9, then the vertex of the parabola is at (-5, 9). Now rearrange it in general form.

  • [tex] f(x) = \text-2(x + 5)^2 + 9 [/tex]

  • [tex] f(x) = \text-2(x^2 + 10x + 25) + 9 [/tex]

  • [tex] f(x) = \text-2x^2 - 20x - 50 + 9 [/tex]

  • [tex] f(x) = \text-2x^2 - 20x - 41 [/tex]

[tex] \therefore [/tex] f(x) = -2- 20x - 41 is the general form of the given quadratic function.

[tex]•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••[/tex]

Number 3:

» Since h is 7 and k is -2, then the vertex of the parabola is at (7, -2). Now rearrange it in general form.

  • [tex] f(x) = \text-(x - 7)^2 - 2 [/tex]

  • [tex] f(x) = \text-(x^2 - 14x + 49) - 2 [/tex]

  • [tex] f(x) = \text-x^2 + 14x - 49 - 2 [/tex]

  • [tex] f(x) = \text-x^2 + 14x - 51 [/tex]

[tex] \therefore [/tex] f(x) = -x² + 14x - 51 is the general form of the given quadratic function.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ