Suriin ang IDNStudy.com para sa mabilis at maaasahang mga solusyon. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.
Sagot :
When we add odd numbers:
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²
* This is because an odd number is expressed as 2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²
So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31
There are 31 terms in the arithmetic sequence
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²
* This is because an odd number is expressed as 2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²
So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31
There are 31 terms in the arithmetic sequence
[tex]Using~the~formula~for~the~sum~of~arithmetic~sequence~you'll~have: \\ S_n=[2A_1 + (n-1)d] \frac{n}{2} \\ Given: \\ S_n = 961 \\ A_1=1 \\ d =2 \\ Substitute~the~given~to~the~formula. \\ 961 = [2(1)+(n-1)(2)] \frac{n}{2} \\ 961 = [2 + 2n - 2 ] \frac{n}{2} \\ 961 = (2n)( \frac{n}{2}) \\ 961 = n^2 \\ Extracting~the~square~root~you'll~have: \\ n = +-31 \\ Take~the~positive~value~since~n~should~be~positive. \\
Therefore~n=31[/tex]
Salamat sa iyong presensya. Patuloy na magbahagi ng impormasyon at karanasan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Bawat tanong ay may sagot sa IDNStudy.com. Salamat sa pagpili sa amin at sa muling pagkikita.