IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga maaasahang sagot. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
When we add odd numbers:
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²
* This is because an odd number is expressed as 2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²
So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31
There are 31 terms in the arithmetic sequence
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²
* This is because an odd number is expressed as 2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²
So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31
There are 31 terms in the arithmetic sequence
[tex]Using~the~formula~for~the~sum~of~arithmetic~sequence~you'll~have: \\ S_n=[2A_1 + (n-1)d] \frac{n}{2} \\ Given: \\ S_n = 961 \\ A_1=1 \\ d =2 \\ Substitute~the~given~to~the~formula. \\ 961 = [2(1)+(n-1)(2)] \frac{n}{2} \\ 961 = [2 + 2n - 2 ] \frac{n}{2} \\ 961 = (2n)( \frac{n}{2}) \\ 961 = n^2 \\ Extracting~the~square~root~you'll~have: \\ n = +-31 \\ Take~the~positive~value~since~n~should~be~positive. \\
Therefore~n=31[/tex]
Ang iyong presensya ay mahalaga sa amin. Patuloy na magbahagi ng iyong karanasan at kaalaman. Sama-sama tayong magtutulungan upang makamit ang mas mataas na antas ng karunungan. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.