IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga maaasahang sagot. Magtanong ng anumang bagay at makatanggap ng mga maalam na sagot mula sa aming komunidad ng mga propesyonal.

how many terms of the arithmetic sequence {1,3,5,7,....} will gave a sum of 961?

Sagot :

When we add odd numbers:
1 = 1 
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²

* This is because an odd number is expressed as  2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²

So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31

There are 31 terms in the arithmetic sequence
[tex]Using~the~formula~for~the~sum~of~arithmetic~sequence~you'll~have: \\ S_n=[2A_1 + (n-1)d] \frac{n}{2} \\ Given: \\ S_n = 961 \\ A_1=1 \\ d =2 \\ Substitute~the~given~to~the~formula. \\ 961 = [2(1)+(n-1)(2)] \frac{n}{2} \\ 961 = [2 + 2n - 2 ] \frac{n}{2} \\ 961 = (2n)( \frac{n}{2}) \\ 961 = n^2 \\ Extracting~the~square~root~you'll~have: \\ n = +-31 \\ Take~the~positive~value~since~n~should~be~positive. \\ Therefore~n=31[/tex]