IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

how many terms of the arithmetic sequence {1,3,5,7,....} will gave a sum of 961?

Sagot :

When we add odd numbers:
1 = 1 
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²

* This is because an odd number is expressed as  2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²

So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31

There are 31 terms in the arithmetic sequence
[tex]Using~the~formula~for~the~sum~of~arithmetic~sequence~you'll~have: \\ S_n=[2A_1 + (n-1)d] \frac{n}{2} \\ Given: \\ S_n = 961 \\ A_1=1 \\ d =2 \\ Substitute~the~given~to~the~formula. \\ 961 = [2(1)+(n-1)(2)] \frac{n}{2} \\ 961 = [2 + 2n - 2 ] \frac{n}{2} \\ 961 = (2n)( \frac{n}{2}) \\ 961 = n^2 \\ Extracting~the~square~root~you'll~have: \\ n = +-31 \\ Take~the~positive~value~since~n~should~be~positive. \\ Therefore~n=31[/tex]