IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga eksaktong sagot. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.
Sagot :
When we add odd numbers:
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²
* This is because an odd number is expressed as 2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²
So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31
There are 31 terms in the arithmetic sequence
1 = 1
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²
* This is because an odd number is expressed as 2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²
So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31
There are 31 terms in the arithmetic sequence
[tex]Using~the~formula~for~the~sum~of~arithmetic~sequence~you'll~have: \\ S_n=[2A_1 + (n-1)d] \frac{n}{2} \\ Given: \\ S_n = 961 \\ A_1=1 \\ d =2 \\ Substitute~the~given~to~the~formula. \\ 961 = [2(1)+(n-1)(2)] \frac{n}{2} \\ 961 = [2 + 2n - 2 ] \frac{n}{2} \\ 961 = (2n)( \frac{n}{2}) \\ 961 = n^2 \\ Extracting~the~square~root~you'll~have: \\ n = +-31 \\ Take~the~positive~value~since~n~should~be~positive. \\
Therefore~n=31[/tex]
Maraming salamat sa iyong aktibong pakikilahok. Magpatuloy sa pagtatanong at pagbahagi ng iyong mga ideya. Sama-sama tayong lumikha ng isang mas matibay at produktibong komunidad ng kaalaman. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Salamat sa iyong pagbisita at sa muling pagkikita.