Sumali sa komunidad ng IDNStudy.com at simulang makuha ang mga sagot na kailangan mo. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Sagot :
If the radicals have the same index,
a) then, multiply the coefficients
b) multiply the radicand
c.) Simplify
Example:
[tex](5 \sqrt[3]{x} ) ( \sqrt[3]{ x^{2} } )[/tex] ⇒ they have the same index, 3
a) (5) (1) = 5
b) [tex] (\sqrt[3]{x} )( \sqrt[3]{x ^{2} } ) = \sqrt[3]{ x^{3} } [/tex]
c) The answer is [tex]5 \sqrt[3]{x^{3} } = 5x[/tex]
If the radicals are not similar, not having same index:
Example:
[tex]( \sqrt[3]{ x^{2} }) ( \sqrt{x ^{3} } )[/tex]
The first radical has index of 3; the second has 2.
a) Convert the radical to rational exponents:
[tex] \sqrt[3]{ x^{2} } = x ^{ \frac{2}{3} } [/tex]
[tex] \sqrt{x ^{3} } = x \frac{3}{2} [/tex]
b) Convert fractional exponent to similar fractions; Find their LCD⇒6
[tex]x \frac{2}{3}= x \frac{4}{6} [/tex]
[tex]x \frac{3}{2}=x \frac{9}{6} [/tex]
c) Convert to radicals then multiply. The index for both radicals is 6.
[tex]( \sqrt[6]{x^{4} } )( \sqrt[6]{x^{9} } ) = \sqrt[6]{x^{13} } [/tex]
d) Simplify:
[tex] \sqrt[6]{x^{13} } = x^{2} \sqrt[6]{x} [/tex]
a) then, multiply the coefficients
b) multiply the radicand
c.) Simplify
Example:
[tex](5 \sqrt[3]{x} ) ( \sqrt[3]{ x^{2} } )[/tex] ⇒ they have the same index, 3
a) (5) (1) = 5
b) [tex] (\sqrt[3]{x} )( \sqrt[3]{x ^{2} } ) = \sqrt[3]{ x^{3} } [/tex]
c) The answer is [tex]5 \sqrt[3]{x^{3} } = 5x[/tex]
If the radicals are not similar, not having same index:
Example:
[tex]( \sqrt[3]{ x^{2} }) ( \sqrt{x ^{3} } )[/tex]
The first radical has index of 3; the second has 2.
a) Convert the radical to rational exponents:
[tex] \sqrt[3]{ x^{2} } = x ^{ \frac{2}{3} } [/tex]
[tex] \sqrt{x ^{3} } = x \frac{3}{2} [/tex]
b) Convert fractional exponent to similar fractions; Find their LCD⇒6
[tex]x \frac{2}{3}= x \frac{4}{6} [/tex]
[tex]x \frac{3}{2}=x \frac{9}{6} [/tex]
c) Convert to radicals then multiply. The index for both radicals is 6.
[tex]( \sqrt[6]{x^{4} } )( \sqrt[6]{x^{9} } ) = \sqrt[6]{x^{13} } [/tex]
d) Simplify:
[tex] \sqrt[6]{x^{13} } = x^{2} \sqrt[6]{x} [/tex]
Salamat sa iyong presensya. Patuloy na magbahagi ng impormasyon at karanasan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!