IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga solusyon. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.
Sagot :
If the radicals have the same index,
a) then, multiply the coefficients
b) multiply the radicand
c.) Simplify
Example:
[tex](5 \sqrt[3]{x} ) ( \sqrt[3]{ x^{2} } )[/tex] ⇒ they have the same index, 3
a) (5) (1) = 5
b) [tex] (\sqrt[3]{x} )( \sqrt[3]{x ^{2} } ) = \sqrt[3]{ x^{3} } [/tex]
c) The answer is [tex]5 \sqrt[3]{x^{3} } = 5x[/tex]
If the radicals are not similar, not having same index:
Example:
[tex]( \sqrt[3]{ x^{2} }) ( \sqrt{x ^{3} } )[/tex]
The first radical has index of 3; the second has 2.
a) Convert the radical to rational exponents:
[tex] \sqrt[3]{ x^{2} } = x ^{ \frac{2}{3} } [/tex]
[tex] \sqrt{x ^{3} } = x \frac{3}{2} [/tex]
b) Convert fractional exponent to similar fractions; Find their LCD⇒6
[tex]x \frac{2}{3}= x \frac{4}{6} [/tex]
[tex]x \frac{3}{2}=x \frac{9}{6} [/tex]
c) Convert to radicals then multiply. The index for both radicals is 6.
[tex]( \sqrt[6]{x^{4} } )( \sqrt[6]{x^{9} } ) = \sqrt[6]{x^{13} } [/tex]
d) Simplify:
[tex] \sqrt[6]{x^{13} } = x^{2} \sqrt[6]{x} [/tex]
a) then, multiply the coefficients
b) multiply the radicand
c.) Simplify
Example:
[tex](5 \sqrt[3]{x} ) ( \sqrt[3]{ x^{2} } )[/tex] ⇒ they have the same index, 3
a) (5) (1) = 5
b) [tex] (\sqrt[3]{x} )( \sqrt[3]{x ^{2} } ) = \sqrt[3]{ x^{3} } [/tex]
c) The answer is [tex]5 \sqrt[3]{x^{3} } = 5x[/tex]
If the radicals are not similar, not having same index:
Example:
[tex]( \sqrt[3]{ x^{2} }) ( \sqrt{x ^{3} } )[/tex]
The first radical has index of 3; the second has 2.
a) Convert the radical to rational exponents:
[tex] \sqrt[3]{ x^{2} } = x ^{ \frac{2}{3} } [/tex]
[tex] \sqrt{x ^{3} } = x \frac{3}{2} [/tex]
b) Convert fractional exponent to similar fractions; Find their LCD⇒6
[tex]x \frac{2}{3}= x \frac{4}{6} [/tex]
[tex]x \frac{3}{2}=x \frac{9}{6} [/tex]
c) Convert to radicals then multiply. The index for both radicals is 6.
[tex]( \sqrt[6]{x^{4} } )( \sqrt[6]{x^{9} } ) = \sqrt[6]{x^{13} } [/tex]
d) Simplify:
[tex] \sqrt[6]{x^{13} } = x^{2} \sqrt[6]{x} [/tex]
Maraming salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!