Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.

Activity C: Directions: Given right S XYZ with right angle at Y, find the missing part. 1. lfz= 10 and x = 24, find y. 2. ffz= 33 and x = 56, find y. 3. If y = 25 and x = 15, how long is z? 4. If x= 377 andz=213. find y, V Z Z 5. If y = 20 and x = 16, find z. X​

Activity C Directions Given Right S XYZ With Right Angle At Y Find The Missing Part 1 Lfz 10 And X 24 Find Y 2 Ffz 33 And X 56 Find Y 3 If Y 25 And X 15 How Lon class=

Sagot :

✏️PYTHAGOREAN THEOREM

==============================

[tex] \large \bold{\blue{DIRECTIONS:}} [/tex] Given right ∆XYZ with right angle at Y, find the missing part!

» Since XYZ is a right triangle, we can solve its sides using the Pythagorean Theorem representing x and z as the legs and y as the hypotenuse.

[tex] \large \boxed{ \begin{align}& \sf y^2 = x^2 + z^2 \\ & \sf x^2 = y^2 - z^2 \\ & \sf z^2 = y^2 - x^2 \end{align}} [/tex]

[tex] \: [/tex]

#1: If z = 10 and x = 24, find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = 24^2 + 10^2 [/tex]

  • [tex] \sf y^2 = 576 + 100 [/tex]

  • [tex] \sf y^2 = 676 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{676} [/tex]

  • [tex] \sf y = 26 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = 26 \: units}}} [/tex]

[tex] \: [/tex]

#2: If z = 33 and x = 56, find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = 56^2 + 33^2 [/tex]

  • [tex] \sf y^2 = 3136 + 1089 [/tex]

  • [tex] \sf y^2 = 4225 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{4225} [/tex]

  • [tex] \sf y = 65 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = 65 \: units}}} [/tex]

[tex] \: [/tex]

#3: If y = 25 and x = 15, how long is z?

  • [tex] \sf z^2 = y^2 - x^2 [/tex]

  • [tex] \sf z^2 = 25^2 - 15^2 [/tex]

  • [tex] \sf z^2 = 625 - 225 [/tex]

  • [tex] \sf z^2 = 400 [/tex]

  • [tex] \sf \sqrt{z^2} = \sqrt{400} [/tex]

  • [tex] \sf z = 20 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{z = 20 \: units}}} [/tex]

[tex] \: [/tex]

#4: If x = 3√2 and z = 2√3. find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = (3\sqrt2)^2 + (2\sqrt3)^2 [/tex]

  • [tex] \sf y^2 = 9(2) + 4(3) [/tex]

  • [tex] \sf y^2 = 18 + 12 [/tex]

  • [tex] \sf y^2 = 30 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{30} [/tex]

  • [tex] \sf y = \sqrt{30} [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = \sqrt{30} \: units}}} [/tex]

[tex] \: [/tex]

#5: If y = 20 and x = 16, find z.

  • [tex] \sf z^2 = y^2 - x^2 [/tex]

  • [tex] \sf z^2 = 20^2 - 16^2 [/tex]

  • [tex] \sf z^2 = 400 - 256 [/tex]

  • [tex] \sf z^2 = 144 [/tex]

  • [tex] \sf \sqrt{z^2} = \sqrt{144} [/tex]

  • [tex] \sf z = 12 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{z = 12 \: units}}} [/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ

Ang iyong kontribusyon ay napakahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.