IDNStudy.com, ang iyong mapagkukunan ng eksaktong at maaasahang mga sagot. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.

Activity C: Directions: Given right S XYZ with right angle at Y, find the missing part. 1. lfz= 10 and x = 24, find y. 2. ffz= 33 and x = 56, find y. 3. If y = 25 and x = 15, how long is z? 4. If x= 377 andz=213. find y, V Z Z 5. If y = 20 and x = 16, find z. X​

Activity C Directions Given Right S XYZ With Right Angle At Y Find The Missing Part 1 Lfz 10 And X 24 Find Y 2 Ffz 33 And X 56 Find Y 3 If Y 25 And X 15 How Lon class=

Sagot :

✏️PYTHAGOREAN THEOREM

==============================

[tex] \large \bold{\blue{DIRECTIONS:}} [/tex] Given right ∆XYZ with right angle at Y, find the missing part!

» Since XYZ is a right triangle, we can solve its sides using the Pythagorean Theorem representing x and z as the legs and y as the hypotenuse.

[tex] \large \boxed{ \begin{align}& \sf y^2 = x^2 + z^2 \\ & \sf x^2 = y^2 - z^2 \\ & \sf z^2 = y^2 - x^2 \end{align}} [/tex]

[tex] \: [/tex]

#1: If z = 10 and x = 24, find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = 24^2 + 10^2 [/tex]

  • [tex] \sf y^2 = 576 + 100 [/tex]

  • [tex] \sf y^2 = 676 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{676} [/tex]

  • [tex] \sf y = 26 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = 26 \: units}}} [/tex]

[tex] \: [/tex]

#2: If z = 33 and x = 56, find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = 56^2 + 33^2 [/tex]

  • [tex] \sf y^2 = 3136 + 1089 [/tex]

  • [tex] \sf y^2 = 4225 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{4225} [/tex]

  • [tex] \sf y = 65 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = 65 \: units}}} [/tex]

[tex] \: [/tex]

#3: If y = 25 and x = 15, how long is z?

  • [tex] \sf z^2 = y^2 - x^2 [/tex]

  • [tex] \sf z^2 = 25^2 - 15^2 [/tex]

  • [tex] \sf z^2 = 625 - 225 [/tex]

  • [tex] \sf z^2 = 400 [/tex]

  • [tex] \sf \sqrt{z^2} = \sqrt{400} [/tex]

  • [tex] \sf z = 20 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{z = 20 \: units}}} [/tex]

[tex] \: [/tex]

#4: If x = 3√2 and z = 2√3. find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = (3\sqrt2)^2 + (2\sqrt3)^2 [/tex]

  • [tex] \sf y^2 = 9(2) + 4(3) [/tex]

  • [tex] \sf y^2 = 18 + 12 [/tex]

  • [tex] \sf y^2 = 30 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{30} [/tex]

  • [tex] \sf y = \sqrt{30} [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = \sqrt{30} \: units}}} [/tex]

[tex] \: [/tex]

#5: If y = 20 and x = 16, find z.

  • [tex] \sf z^2 = y^2 - x^2 [/tex]

  • [tex] \sf z^2 = 20^2 - 16^2 [/tex]

  • [tex] \sf z^2 = 400 - 256 [/tex]

  • [tex] \sf z^2 = 144 [/tex]

  • [tex] \sf \sqrt{z^2} = \sqrt{144} [/tex]

  • [tex] \sf z = 12 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{z = 12 \: units}}} [/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ