IDNStudy.com, ang iyong mapagkukunan ng mabilis at pangkomunidad na mga sagot. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

An isosceles trapezoid has an area of 40 m^2 and an altitude of 2m. Its two bases have a ratio of 2 is to 3. What are the lengths of the bases and one diagonal of the trapezoid?

Sagot :

Area of isosceles trapezoid = ¹/₂ (a + b) (h)

Where a and b are parallel bases with ratio of 2:3, and h is the height or altitude.

Area: 40 m²
a = 2x
b = 3x
h = 2 m

Equation:
40 m² = ¹/₂ (2x + 3x) (2m)
40 m² = ¹/₂ (5x) (2 m)
40 m² = ¹/₂ (10 m)(x)
40 m² = 5m (x)
40 m² ÷ 5m = 5m(x) ÷ 5m
8 m = x

Substitute 8 m to x in parallel bases a and b:
Base a = 2x ⇒ 2(8 m) = 16 m
Base b = 3x ⇒ 3(8 m) = 24 m

ANSWER:  The lengths of the bases are 16 m and 24 m, respectively, with a ratio of 2:3.

Diagonal of Isosceles Trapezoid, using Pythagorean Theorem for solving the diagonal (hypotenuse).

Diagonal = [tex] \sqrt{(h) ^{2} + (b-4) ^{2} } [/tex]

= [tex] \sqrt{(2 m) ^{2}+(24m-4m) ^{2} } [/tex]

= [tex] \sqrt{4 m ^{2}+400m ^{2} } [/tex]

= [tex] \sqrt{404 m ^{2} } [/tex]

= [tex] \sqrt{(4m ^{2}) (101) } [/tex]

= 2[tex] \sqrt{101} [/tex] meters

≈ 20.099 meters

ANSWER:  The length of a diagonal is approx. 20.99 meters or 20 meters.

Please click image below for solution with illustration.

View image Аноним