Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.

the population of a certain kind of fleas grows exponentially. If the initial population of fleas was 1,500 and after 5 days, the population was 9,000, after how many days will the population of fleas become 90,000?

Sagot :

[tex]P = C {e}^{kt} [/tex]

1st Condition:

P = 1,500 ; t = 0 days

[tex]P = C {e}^{kt} [/tex]

[tex]1500 = C {e}^{k(0)} [/tex]

[tex]1500 = C {e}^{0} [/tex]

[tex]C = 1500[/tex]

[tex]P = 1500 {e}^{kt} [/tex]

2nd Condition:

P = 9,000 ; t = 5 days

[tex]P = 1500 {e}^{kt} [/tex]

[tex]9000 = 1500 {e}^{k(5)} [/tex]

[tex] \frac{9000}{1500} = {e}^{5k} [/tex]

[tex]6 = {e}^{5k} [/tex]

multiply both sides by ln

[tex]ln(6) = ln( {e}^{5k} )[/tex]

[tex]1.791759469 = 5k[/tex]

[tex]k = 0.3583518938[/tex]

[tex]P = 1500 {e}^{0.3583518938t} [/tex]

3rd Condition:

P = 90,000 ; t = ? days

[tex]P = 1500 {e}^{0.3583518938t} [/tex]

[tex]90000 = 1500 {e}^{0.3583518938t} [/tex]

multiply both sides by ln

[tex]ln( \frac{90000}{1500} ) = ln( {e}^{0.3583518938t} )[/tex]

[tex]4.094344562 = 0.3583518938t[/tex]

[tex]t = 11.43 \: days[/tex]