Makahanap ng mga solusyon sa iyong mga problema sa tulong ng mga eksperto ng IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

Five applicants are simultaneously applying for two different jobs in a company. In how many ways can these jobs be filled?
show your solution​


Five Applicants Are Simultaneously Applying For Two Different Jobs In A Company In How Many Ways Can These Jobs Be Filledshow Your Solution class=

Sagot :

[tex]\bold {PROBLEM:}[/tex]

Five applicants are simultaneously applying for two different jobs in a company. In how many ways can these jobs be filled?

[tex]\bold {SOLUTION:}[/tex]

Using the Combinations formula,

[tex] \begin{array}{l} \large \tt C(n,r)= \frac{n!}{(n-r)!r!} \\ \\ \large\tt C(5,2) = \frac{5!}{(5-2)!2!} \\ \\ \large \tt C(5,2)= \frac{5!}{3!2!} \\ \\ \large\tt C(5,2)= \frac{5×4×\cancel{3!}}{\cancel{3!}2!} \\ \\ \large\tt C(5,2) = \frac{20}{2} \\ \\ \large \red{ \boxed{\tt C(5,2)=10}} \end{array}[/tex]

[tex]\bold {FINAL\:ANSWER:}[/tex]

  • There are 10 ways to fill the job.

[tex]\\[/tex]

#CarryOnLearning

[tex]\begin{aligned}\bold{FORMULA:}\\ \\ \sf \: C_k(n)=\bigg(\frac{n}{k}\bigg)=\frac{n!}{k!(n-k)!} \\ \\ \sf \: n = 5 \\ \sf \: k = 2 \\ \\ \sf \: C_2(5)=\bigg(\frac{5}{2}\bigg)=\frac{5!}{2!(5-2)!}\\\\\sf C_2(5)= \frac{5 \times 4}{2 \times 1}= \sf \frac{20}{2} = 10\end{aligned}[/tex]