IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga maaasahang sagot. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.

two adjacent of a parallelogram are (2m+15)° and (3m-5)° what is the value of m? help po:'(

a.30
b.32
c.34
d.36​


Sagot :

• Problem:

Two adjacent of a parallelogram are (2m+15)° and (3m-5)°, what is the value of m?

• Solution:

One of the properties of parallelogram says that the measure of two adjacent or consecutive angles equates to 180°. They are supplementary angles.

[tex] \large \tt(2m+15° ) + (3m-5)° = 180 \degree[/tex]

[tex] \large \tt2m+15 + 3m-5 = 180[/tex]

[tex] \large \tt5m+10= 180[/tex]

[tex] \large \tt5m= 180 - 10[/tex]

[tex] \large \tt5m= 170[/tex]

[tex] \large \tt m= 34[/tex]

Thus, the value of m is 34.

• Answer:

The answer is [tex] \large \boxed{ \tt c.34}[/tex].