[tex]\frac{ x}{x-2} + \frac{2}{x+2} =\frac{x^2-1}{x^2-4 }\\ \\ \frac{ x}{x-2} + \frac{2}{x+2} =\frac{x^2-1}{(x-2)(x+2)}\\ \\x-2\neq 0 \ \ and \ \ x+2\neq 0 \\ \\x \neq 2 \ \ and \ \ x \neq -2\\\\D=R\setminus \left \{ -2,2 \right \}[/tex]
[tex]\frac{ x}{x-2} + \frac{2}{x+2} -\frac{x^2-1}{(x-2)(x+2)} =0\\\\\frac{ x(x+2)+2(x-2)-(x^2-1) }{(x-2)(x+2} =0\\\\\frac{ x^2+2x+2 x-4- x^2+1 }{(x-2)(x+2} =0[/tex]
[tex]\frac{ 4x - 3 }{(x-2)(x+2} =0 \\ \\4x-3=0\\ \\4x=3 \ \ / :4 \\\\x=\frac{3}{4}[/tex]