Suriin ang IDNStudy.com para sa mabilis at kaugnay na mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

How many turns are required to produce 30 mH with a coil would on a cylindrical core having a cross-sectional area of 100 mm^2? and a length of 0.05 m. The core has a permeability of 1.26x10^-6.

Sagot :

Answer:

• Don't copy you will see like this < / p > < p>. warning!

where:

- \( L \) is the inductance,

- \( \mu \) is the permeability of the core,

- \( N \) is the number of turns,

- \( A \) is the cross-sectional area of the core,

- \( l \) is the length of the core.

Given:

- Inductance (\( L \)) = 30 mH = 30 \times 10^{-3} H,

- Permeability (\( \mu \)) = 1.26 \times 10^{-6} H/m,

- Cross-sectional area (\( A \)) = 100 mm\(^2\) = 100 \times 10^{-6} m\(^2\),

- Length (\( l \)) = 0.05 m.

Rearranging the formula to solve for \( N \):

\[ N^2 = \frac{L \cdot l}{\mu \cdot A} \]

[tex] \large {Plugging \: in \: the \: given values}[/tex]

[tex]\[ N^2 = \frac{30 \times 10^{-3} \text{ H} \times 0.05 \text{ m}}{1.26 \times 10^{-6} \text{ H/m} \times 100 \times 10^{-6} \text{ m}^2} \][/tex]

[tex]\[ N^2 = \frac{1.5 \times 10^{-3}}{1.26 \times 10^{-6} \times 100 \times 10^{-6}} \]

[/tex]

[tex]\[ N^2 = \frac{1.5 \times 10^{-3}}{1.26 \times 10^{-12}} \][/tex]

[tex]\[ N^2 = \frac{1.5}{1.26} \times 10^9 \][/tex]

[tex]\[ N^2 \approx 1.1905 \times 10^9 \][/tex]

[tex]\[ N \approx \sqrt{1.1905 \times 10^9} \]

[/tex]

[tex] \: \red{ \boxed{\[ N \approx 34,510 \]}}[/tex]