An object is dropped from the second-highest floor of the Sears Tower, 1542 feet off of the ground. (a) Construct the position and velocity equations for the object in terms of t, where t represents the number of seconds that have elapsed since the object was released. (b) Calculate the average velocity of the object over the interval t = 2 and t = 3 seconds. (c) Compute the velocity of the object 1, 2, and 3 seconds after it is released. (d) How many seconds does it take the object to hit the ground? Report your answer accurate to the thousandths place. (e) If the object were to hit a six-foot-tall man squarely on the top of the head as he (unluckily) passed beneath, how fast would the object be moving at the moment of impact? Report your answer accurate to the thousandths place.