IDNStudy.com, ang iyong gabay para sa mga sagot ng komunidad at eksperto. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

how many terms of the arithmetic sequence {1,3,5,7,....} will gave a sum of 961?

Sagot :

When we add odd numbers:
1 = 1 
1 + 3 = 4
1 + 3 + 5 = 9
...
Notice that the sum of n terms is n²

* This is because an odd number is expressed as  2n-1, we would need to get the sum of all 2n-1 substituting the value from 1 to n. (This is summation)
So we would have 2(1+2+3+...+n) - n = 2[n(n+1)/2] - n = n(n+1) - n = n(n+1-1) = n²

So:
Sum of n terms = 961
Sum of n terms = 31² = n²
n = 31

There are 31 terms in the arithmetic sequence
[tex]Using~the~formula~for~the~sum~of~arithmetic~sequence~you'll~have: \\ S_n=[2A_1 + (n-1)d] \frac{n}{2} \\ Given: \\ S_n = 961 \\ A_1=1 \\ d =2 \\ Substitute~the~given~to~the~formula. \\ 961 = [2(1)+(n-1)(2)] \frac{n}{2} \\ 961 = [2 + 2n - 2 ] \frac{n}{2} \\ 961 = (2n)( \frac{n}{2}) \\ 961 = n^2 \\ Extracting~the~square~root~you'll~have: \\ n = +-31 \\ Take~the~positive~value~since~n~should~be~positive. \\ Therefore~n=31[/tex]