IDNStudy.com, ang iyong destinasyon para sa mga maaasahang sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

Detemine the Reaction of R1, Detemine the Reaction of R2, Detemine the Reaction of R3, Detemine the Reaction of FR2

Detemine The Reaction Of R1 Detemine The Reaction Of R2 Detemine The Reaction Of R3 Detemine The Reaction Of FR2 class=

Sagot :

[tex] {⚠️ \: Don't \: Copy \: Like these < \ p >. < p > }[/tex]

______________________________________

### Step 1: Sum of Vertical Forces

[tex]\[

R_1 + R_2 + R_3 = 240 \text{ lb} + 960 \text{ lb}

\][/tex]

[tex]\[

R_1 + R_2 + R_3 = 1200 \text{ lb} \quad \text{(Equation 1)}

\][/tex]

### Step 2: Sum of Moments about \( R_2 \)

Taking moments about \( R_2 \):

[tex]\[

\sum M_{R_2} = 0 \implies R_1 \cdot 8 \text{ ft} - 240 \text{ lb} \cdot 9 \text{ ft} - 960 \text{ lb} \cdot (9 + 3) \text{ ft} + R_3 \cdot 12 \text{ ft} = 0

\]

[/tex]

Simplifying the distances for moments:

[tex]\[

R_1 \cdot 8 \text{ ft} - 240 \text{ lb} \cdot 9 \text{ ft} - 960 \text{ lb} \cdot 12 \text{ ft} + R_3 \cdot 12 \text{ ft} = 0

\][/tex]

[tex]\[

R_1 \cdot 8 - 240 \cdot 9 - 960 \cdot 12 + R_3 \cdot 12 = 0

\]

[/tex]

[tex]\[

8R_1 - 2160 - 11520 + 12R_3 = 0

\][/tex]

[tex]

\[

8R_1 + 12R_3 = 13680 \quad \text{(Equation 2)}

\][/tex]

### Step 3: Sum of Moments about \( R_3 \)

Taking moments about \( R_3 \):

[tex]\[

\sum M_{R_3} = 0 \implies R_1 \cdot 20 \text{ ft} - 240 \text{ lb} \cdot 21 \text{ ft} - 960 \text{ lb} \cdot 3 \text{ ft} + R_2 \cdot 12 \text{ ft} = 0

\][/tex]

Simplifying the distances for moments:

[tex]\[

R_1 \cdot 20 - 240 \cdot 21 - 960 \cdot 3 + R_2 \cdot 12 = 0

\][/tex]

[tex]\[

20R_1 - 5040 - 2880 + 12R_2 = 0

\]

[/tex]

[tex]\[

20R_1 + 12R_2 = 7920 \quad \text{(Equation 3)}

\][/tex]

### Step 4: Solving the Equations

We now have a system of three equations with three unknowns:

[tex]1. \( R_1 + R_2 + R_3 = 1200 \)

2. \( 8R_1 + 12R_3 = 13680 \)

3. \( 20R_1 + 12R_2 = 7920 \)[/tex]

Let's solve this system of equations.

[tex]From Equation 2:

\[

8R_1 + 12R_3 = 13680 \implies R_3 = \frac{13680 - 8R_1}{12}

\][/tex]

[tex]From Equation 3:

\[

20R_1 + 12R_2 = 7920 \implies R_2 = \frac{7920 - 20R_1}{12}

\][/tex]

Substitute \( R_3 \) and \( R_2 \) back into Equation 1:

[tex]\[

R_1 + \frac{7920 - 20R_1}{12} + \frac{13680 - 8R_1}{12} = 1200

\]

[/tex]

Simplifying the equation:

[tex]\[

R_1 + \frac{7920 - 20R_1 + 13680 - 8R_1}{12} = 1200

\][/tex]

[tex]\[

R_1 + \frac{21600 - 28R_1}{12} = 1200

\][/tex]

Multiply through by 12 to clear the denominator:

[tex]\[

12R_1 + 21600 - 28R_1 = 14400

\][/tex]

[tex]\[

-16R_1 = -7200

\][/tex]

[tex]\[

R_1 = 450 \text{ lb}

\][/tex]

Now, substitute \( R_1 = 450 \text{ lb} \) back into the equations for \( R_2 \) and \( R_3 \):

[tex]\[

R_2 = \frac{7920 - 20 \cdot 450}{12}

\][/tex]

[tex]\[

R_2 = \frac{7920 - 9000}{12} = \frac{-1080}{12} = -90 \text{ lb} \quad \text{(Negative value indicates a downward force)}

\][/tex]

[tex]\[

R_3 = \frac{13680 - 8 \cdot 450}{12}

\]

[/tex]

[tex]\[

R_3 = \frac{13680 - 3600}{12} = \frac{10080}{12} = 840 \text{ lb}

\]

[/tex]

### Summary of Reactions

[tex]

\[

R_1 = 450 \text{ lb}

\][/tex]

[tex]\[

R_2 = -90 \text{ lb} \quad \text{(Indicates downward force)}

\][/tex]

[tex]\[

R_3 = 840 \text{ lb}

\]

[/tex]

[tex]For \( F_{R_2} \):

\[

F_{R_2} = R_2 = -90 \text{ lb}

\][/tex]

The reactions are:

[tex]- \( R_1 = 450 \text{ lb} \)

- \( R_2 = -90 \text{ lb} \) (downward force)

- \( R_3 = 840 \text{ lb} \)

- \( F_{R_2} = -90 \text{ lb} \)

[/tex]

View image Jafif67556
View image Jafif67556
View image Jafif67556