Makakuha ng mabilis at maaasahang mga sagot sa iyong mga tanong sa IDNStudy.com. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Show that the points (-2,5), (-2,-1) and (4,-1)all lie on a circle whose center is at (1,2). Find the length of the radius.

Sagot :

REMEMBER that if the points lie on the circle, it would have the same distance from the center then we can say that if points (-2,5), (-2,-1) and (4,-1) are having the same distance from the center located at (1,2) then the points are part of the circle.
---------------------------------
Distance Formula:
[tex]d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}[/tex]
--------------------------------
Distance from point (-2,5) to the center (1,2)
[tex]d = \sqrt{(1-(-2))^2+(2-5)^2}[/tex]
[tex]d = \sqrt{3^2+(-3)^2}[/tex]
[tex]d = 3\sqrt2[/tex]
--------------------------------
Distance from the point (-2,-1) to the center (1,2)
[tex]d = \sqrt{(1-(-2))^2+(2-(-1))^2}[/tex]
[tex]d = \sqrt{3^2 + 3^2}[/tex]
[tex]d = 3\sqrt2[/tex]
-------------------------------
Distance from the point (4,-1) to the center (1,2)
[tex]d = \sqrt{(1-4)^2+(2-(-1))^2}[/tex]
[tex]d = \sqrt{(-3)^2+3^2}[/tex]
[tex]d = 3\sqrt2[/tex]
------------------------------
Since the distances of the points to the center is equal then we can say that the points lie on the circle with the radius of 3√2.