IDNStudy.com, kung saan nagtatagpo ang mga eksperto para sagutin ang iyong mga tanong. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
The word "BULLET" has 240 possible permutations such that the vowels are never together.
Step 1: Count how many possible arrangements will a six-digit word with two vowels have such that the vowels are not together.
Let us represent the vowels as "V" and the consonants as "C".
VCVCCC - 1
VCCVCC - 2
VCCCVC - 3
VCCCCV - 4
CVCVCC - 5
CVCCVC - 6
CVCCCV - 7
CCVCVC - 8
CCVCCV - 9
CCCVCV - 10
There are 10 possible arrangements so that the vowels are not together.
Step 2: Find how many possible arrangements do the vowels and consonants of the word "BULLET" have.
Vowels = EU = 2 letters = 2!
↓
Vowels = 2 possible arrangements
[tex]Consonants = BLLT = \frac{4 \: letters}{2 \: repeated \: } = \frac{4!}{2!} [/tex]
[tex] \frac{4!}{2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = 4 \times 3 = 12[/tex]
↓
Consonants = 12 possible arrangements
Step 3: Multiply all the answers you got.
10 × 2 × 12 = 240
#CarryOnLearning