IDNStudy.com, kung saan nagtatagpo ang mga eksperto para sagutin ang iyong mga tanong. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

How many different possible
permutations can be made from
the word "BULLET" such that the
vowels are never together
?​


Sagot :

ANSWER

The word "BULLET" has 240 possible permutations such that the vowels are never together.

EXPLANATION

Step 1: Count how many possible arrangements will a six-digit word with two vowels have such that the vowels are not together.

Let us represent the vowels as "V" and the consonants as "C".

VCVCCC - 1

VCCVCC - 2

VCCCVC - 3

VCCCCV - 4

CVCVCC - 5

CVCCVC - 6

CVCCCV - 7

CCVCVC - 8

CCVCCV - 9

CCCVCV - 10

There are 10 possible arrangements so that the vowels are not together.

Step 2: Find how many possible arrangements do the vowels and consonants of the word "BULLET" have.

Vowels = EU = 2 letters = 2!

Vowels = 2 possible arrangements

[tex]Consonants = BLLT = \frac{4 \: letters}{2 \: repeated \: } = \frac{4!}{2!} [/tex]

[tex] \frac{4!}{2!} = \frac{4 \times 3 \times 2 \times 1}{2 \times 1} = 4 \times 3 = 12[/tex]

Consonants = 12 possible arrangements

Step 3: Multiply all the answers you got.

10 × 2 × 12 = 240

#CarryOnLearning

Natutuwa kami na ikaw ay bahagi ng aming komunidad. Huwag kalimutang bumalik upang magtanong at magbahagi ng iyong karanasan. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.