IDNStudy.com, ang iyong destinasyon para sa mga sagot ng eksperto. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

A farmer has 100 pigs each weighing 300 pounds. It costs $.50 a day to keep one pig. The
pigs gain weight at 10 pounds a day. They sell today for $.75 a pound, but the price is falling
by $.01 a day. How many days should the farmer wait to sell his pigs in order to maximize
his profit?


Sagot :

[tex]\mathbb{SOLUTION:}[/tex]

To simplify our calculations, let's consider 1 pig only.

Let:

P = profit ($, per pig)

S = sales ($, per pig)

p = price per pound ($/lb, per pig)

w = weight (lb)

C = cost per day to keep 1 pig ($)

t = number of days (days)

[tex]\\[/tex]

The profit is equal to the total sales minus the production cost.

[tex]\mathsf{P=S-C} \longleftarrow \textsf{working equation}[/tex]

[tex]\\[/tex]

From: Each weighing 300 pounds and the pigs gain weight at 10 pounds a day

[tex]\mathsf{w=300+10t}[/tex]

[tex]\\[/tex]

From: They sell today for $.75 a pound, but the price is falling

by $.01 a day

[tex]\mathsf{p=0.75-0.01t}[/tex]

[tex]\\[/tex]

The sales is equal to the price per pound multiplied by the weight.

[tex]\mathsf{S=pw}[/tex]

[tex]\mathsf{S=(0.75-0.01t)(300+10t)}[/tex]

[tex]\mathsf{S=225+7.5t-3t-0.1t^2}[/tex]

[tex]\mathsf{S=225+4.5t-0.1t^2}[/tex]

(Note: The unit of p is $/lb and the unit of w is lb, if we multiply p and w the resulting unit is $, which is the unit of the sales, S)

[tex]\\[/tex]

From: It costs $.50 a day to keep one pig

[tex]\mathsf{C=0.50t}[/tex]

[tex]\\[/tex]

Substitute S and C in our working equation

[tex]\mathsf{P=S-C}[/tex]

[tex]\mathsf{P=225+4.5t-0.1t^2-0.5t}[/tex]

[tex]\mathsf{P=225+4t-0.1t^2}[/tex]

[tex]\\[/tex]

To maximize the profit, differentiate it then equate to zero.

[tex]\mathsf{\dfrac{d}{dt}(P=225+4t-0.1t^2)}[/tex]

[tex]\mathsf{\dfrac{dP}{dt}=4-0.2t}[/tex]

[tex]\mathsf{4-0.2t=0}[/tex]

[tex]\mathsf{0.2t=4}[/tex]

[tex]\mathsf{t=20}[/tex]

[tex]\\[/tex]

[tex]\mathbb{ANSWER:}[/tex]

To maximize the profit of the farmer, he should wait

[tex]\boxed{\mathsf{t=20 \ days}}[/tex]