Sumali sa IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

A farmer has 100 pigs each weighing 300 pounds. It costs $.50 a day to keep one pig. The
pigs gain weight at 10 pounds a day. They sell today for $.75 a pound, but the price is falling
by $.01 a day. How many days should the farmer wait to sell his pigs in order to maximize
his profit?


Sagot :

[tex]\mathbb{SOLUTION:}[/tex]

To simplify our calculations, let's consider 1 pig only.

Let:

P = profit ($, per pig)

S = sales ($, per pig)

p = price per pound ($/lb, per pig)

w = weight (lb)

C = cost per day to keep 1 pig ($)

t = number of days (days)

[tex]\\[/tex]

The profit is equal to the total sales minus the production cost.

[tex]\mathsf{P=S-C} \longleftarrow \textsf{working equation}[/tex]

[tex]\\[/tex]

From: Each weighing 300 pounds and the pigs gain weight at 10 pounds a day

[tex]\mathsf{w=300+10t}[/tex]

[tex]\\[/tex]

From: They sell today for $.75 a pound, but the price is falling

by $.01 a day

[tex]\mathsf{p=0.75-0.01t}[/tex]

[tex]\\[/tex]

The sales is equal to the price per pound multiplied by the weight.

[tex]\mathsf{S=pw}[/tex]

[tex]\mathsf{S=(0.75-0.01t)(300+10t)}[/tex]

[tex]\mathsf{S=225+7.5t-3t-0.1t^2}[/tex]

[tex]\mathsf{S=225+4.5t-0.1t^2}[/tex]

(Note: The unit of p is $/lb and the unit of w is lb, if we multiply p and w the resulting unit is $, which is the unit of the sales, S)

[tex]\\[/tex]

From: It costs $.50 a day to keep one pig

[tex]\mathsf{C=0.50t}[/tex]

[tex]\\[/tex]

Substitute S and C in our working equation

[tex]\mathsf{P=S-C}[/tex]

[tex]\mathsf{P=225+4.5t-0.1t^2-0.5t}[/tex]

[tex]\mathsf{P=225+4t-0.1t^2}[/tex]

[tex]\\[/tex]

To maximize the profit, differentiate it then equate to zero.

[tex]\mathsf{\dfrac{d}{dt}(P=225+4t-0.1t^2)}[/tex]

[tex]\mathsf{\dfrac{dP}{dt}=4-0.2t}[/tex]

[tex]\mathsf{4-0.2t=0}[/tex]

[tex]\mathsf{0.2t=4}[/tex]

[tex]\mathsf{t=20}[/tex]

[tex]\\[/tex]

[tex]\mathbb{ANSWER:}[/tex]

To maximize the profit of the farmer, he should wait

[tex]\boxed{\mathsf{t=20 \ days}}[/tex]