Makakuha ng mga sagot sa iyong mga pinakamahahalagang tanong sa IDNStudy.com. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

given the quadratic equation x²-x-6=0 , find the roots in three methods
A. Factoring
B. Completing the square
C. Quadratic Formula​


Sagot :

A. FACTORING:

x² - x - 6 = 0

(x - 3) (x + 2) = 0

Solve for the roots:

x - 3 = 0

x = 3

x + 2 = 0

x = -2

B. COMPLETING THE SQUARE

x² - x - 6 = 0

  • In order to complete the square, the equation must be in the form ax² + bx = c.
  • Add 6 to both sides of the equation

x² - x = 6

  • Divide -1, the coefficient of x term, by 2 to get -1/2. Then add the square of -1/2 to both sides of the equation. This step makes the left side of the equation a perfect square trinomial.

x² - x + (-1/2)^2 = 6 + (-1/2)^2

x² - x + (-1/2)^2 = 6 + (-1/2)^2

x² - x + 1/4 = 6 + 1/4

  • Add 6 to 1/4

x² - x + 1/4 = 25/4

  • Factor x² - x + 1/4, using a square of the binomial rule.

(x - 1/2)^2 = 25/4

  • Take the square root of both sides of the equation

√(x - 1/2)^2 = √25/4

(x - 1/2) = ± 5/2

Solve for the roots:

x - 1/2 = 5/2

x = 1/2 + 5/2

x = 6/2

x = 3

x -1/2 = - 5/2

x = 1/2 - 5/2

x = -4/2

x = -2

C. QUADRATIC FORMULA

x² - x - 6 = 0

  • Use the formula x = -b ± √b² - 4ac / 2a.

1. Identify the values of a, b & c

a = 1

b = -1

c = -6

2. Substitute the values to the formula x = -b ± √b² - 4ac / 2a.

x = -(-1) ± √1 - 4(1)(-6) / 2

x = -(-1) ± √1 + 24 / 2

x = -(-1) ± √25 / 2

  • Take the square root of 25.

x = -(-1) ± 5 / 2

x = 1 ± 5 / 2

Solve for the roots:

x = 1 + 5/ 2

x = 6/2

x = 3

x = 1 - 5/ 2

x = -4/2

x = -2

- Based on the three methods of finding the roots of x² - x - 6 = 0, we can conclude that the roots are fixed or can't be changed. You will get the same result, despite different ways of methods to solve it.

- I hope this can help you a lot. :)

#CarryOnLearning