Makakuha ng detalyadong mga sagot sa iyong mga tanong gamit ang IDNStudy.com. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the area of a pentagon which is circumscribing a circle having an area of 420.60 cm²​

Sagot :

Problem:

Find the area of a pentagon which is circumscribing a circle having an area of 420.60 cm²​

Solution:

Area of Circle = 420.60 cm²

Area of Circle = πr²

420.60 = πr²

[tex]\[\begin{array}{l}{r^2} = \frac{{420.6}}{\pi }\\\\r = \sqrt {133.88113812890235644878502174896} \\\\r = 11.570701712899799598cm\end{array}\][/tex]

A Pentagon is a 5 sided polygon

[tex]\[\begin{array}{l}\theta = \frac{{360}}{5}\\\\\theta = 72\\\\\frac{{72}}{2} = 36^\circ \end{array}\][/tex]

[tex]\[\begin{array}{l}\tan \theta = \frac{y}{{11.5707}}\\\\\tan 36 = \frac{y}{{11.5707}}\\\\y = 11.5707\tan 36\\\\y = 8.40660562879cm\\\end{array}\][/tex]

Area of 1 triangle = 1/2(b)(h)

Area of 1 triangle = 1/2(8.40660562879 + 8.40660562879)(11.57070171289)

Area of 1 triangle = 1/2(16.8132112576 )(11.57070171289)

Area o 1 triangle = 97.27cm²

Area of 5 triangles = 97.27(5)

Area of 5 triangles = 486.35 cm²

Answer:

The area of the pentagon circumscribing a circle is 486.35cm²

#CarryOnLearning

View image KallesElias