Magtanong at makakuha ng maaasahang mga sagot sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.

patulong po nito...please po...​

Patulong Po Nitoplease Po class=

Sagot :

Problem 1:

Solution (c):

We carry out two sep-a-rate calculations. First, starting with 36.8 g of Zn, we calculate the number of moles of ZnS that could be produced if all the Zn reacted according to the following conversions

grams of Zn → moles of Zn → moles of ZnS

Combining the conversions in one step, we write

[tex]moles \: of \: ZnS = 36.8 \: g \: Zn \times \frac{1 \: mol \: Zn}{65.378 \: g \: Zn} \times \frac{1 \: mol \: ZnS}{1 \: mol \: Zn}[/tex]

[tex]moles \: of \: ZnS = 0.56288 \: mol \: ZnS[/tex]

Second, for 19.4 g of S, the conversions are

grams of S → moles of S → moles of ZnS

The number of moles of ZnS that could be produced if all the S reacted is

[tex]moles \: of \: ZnS = 19.4 \: g \: S \times \frac{1 \: mol \: S}{32.065 \: g \: S} \times \frac{1 \: mol \: ZnS}{1 \: mol \: S}[/tex]

[tex]moles \: of \: ZnS = 0.60502 \: mol \: ZnS[/tex]

It follows that

Zn must be the limiting reageant because it produces a smaller amount of ZnS.

Solution (a):

The number of moles of ZnS that could be produced if all the S reacted is

[tex]moles \: of \: ZnS = 19.4 \: g \: S \times \frac{1 \: mol \: S}{32.065 \: g \: S} \times \frac{1 \: mol \: ZnS}{1 \: mol \: S}[/tex]

[tex]\blue{moles \: of \: ZnS = 0.605 \: mol \: ZnS}[/tex]

Solution (b):

The mass of ZnS that could be produced if all the Zn reacted is

[tex]mass \: of \: ZnS = 36.8 \: g \: Zn \times \frac{1 \: mol \: Zn}{65.378 \: g \: Zn} \times \frac{1 \: mol \: ZnS}{1 \: mol \: Zn} \times \frac{97.443 \: g \: ZnS}{1 \: mol \: ZnS}[/tex]

[tex]\blue{mass \: of \: ZnS = 54.8 \: g \: ZnS}[/tex]

Solution (d):

Starting with 0.56288 mol of ZnS, we can determine the mass of S that reacted using the mole ratio from the balanced equation and the molar mass of S. The conversion steps are:

moles of ZnS → moles of S → grams of S

so that

[tex]mass \: of \: S \: reacted = 0.56288 \: mol \: ZnS \times \frac{1 \: mol \: S}{1 \: mol \: ZnS} \times \frac{32.065 \: g \: S}{1 \: mol \: S}[/tex]

[tex]mass \: of \: S \: reacted = 18.049 \: g \: S[/tex]

The amount of S remaining (in excess) is the difference between the initial amount (19.4 g) and the amount reacted (18.049 g):

mass of S remaining = 19.4 g - 18.049 g = 1.35 g

Problem 2:

Solution (c):

We carry out two sep-a-rate calculations. First, starting with 126.4 g of NaOH, we calculate the number of moles of NaAlO₂ that could be produced if all the NaOH reacted according to the following conversions

grams of NaOH → moles of NaOH → moles of NaAlO₂

Combining the conversions in one step, we write

[tex]moles \: of \: NaAlO_{2} = 126.4 \: g \: NaOH \times \frac{1 \: mol \: NaOH}{39.9971 \: g \: NaOH} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: NaOH}[/tex]

[tex]moles \: of \: NaAlO_{2} = 3.16023 \: mol \: NaAlO_{2}[/tex]

Second, for 97.70 g of Al, the conversions are

grams of Al → moles of Al → moles of NaAlO₂

The number of moles of NaAlO₂ that could be produced if all the Al reacted is

[tex]moles \: of \: NaAlO_{2} = 97.70 \: g \: Al \times \frac{1 \: mol \: Al}{26.9815 \: g \: Al} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: Al}[/tex]

[tex]moles \: of \: NaAlO_{2} = 3.621 \: mol \: NaAlO_{2}[/tex]

It follows that

NaOH must be the limiting reageant because it produces a smaller amount of NaAlO₂.

Solution (a):

The number of moles of NaAlO₂ that could be produced if all the NaOH reacted is

[tex]moles \: of \: NaAlO_{2} = 126.4 \: g \: NaOH \times \frac{1 \: mol \: NaOH}{39.9971 \: g \: NaOH} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: NaOH}[/tex]

[tex]\blue{moles \: of \: NaAlO_{2} = 3.160 \: mol \: NaAlO_{2}}[/tex]

Solution (b):

The mass of NaAlO₂ that could be produced if all the NaOH reacted is

[tex]mass \: of \: NaAlO_{2} = 126.4 \: g \: NaOH \times \frac{1 \: mol \: NaOH}{39.9971 \: g \: NaOH} \times \frac{2 \: mol \: NaAlO_{2}}{2 \: mol \: NaOH} \times \frac{81.9701 \: g \: NaAlO_{2}}{1 \: mol \: NaAlO_{2}}[/tex]

[tex]\blue{mass \: of \: NaAlO_{2} = 259.0 \: g \: NaAlO_{2}}[/tex]

Solution (d):

Starting with 3.16023 mol of NaAlO₂, we can determine the mass of Al that reacted using the mole ratio from the balanced equation and the molar mass of Al. The conversion steps are:

moles of NaAlO₂ → moles of Al → grams of Al

so that

[tex]mass \: of \: Al \: reacted = 3.16023 \: mol \: NaAlO_{2} \times \frac{2 \: mol \: Al}{2 \: mol \: NaAlO_{2}} \times \frac{26.9815 \: g \: Al}{1 \: mol \: Al}[/tex]

[tex]mass \: of \: Al \: reacted = 85.27 \: g \: Al[/tex]

The amount of Al remaining (in excess) is the difference between the initial amount (97.70 g) and the amount reacted (85.27 g):

mass of Al remaining = 97.70 g - 85.27 g = 12.43 g

#CarryOnLearning

View image Аноним
View image Аноним
View image Аноним
View image Аноним