Makakuha ng maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.


[tex] \sqrt{87} \: \: \: is \: between \: \: \: \: and \: \: \\ [/tex]
[tex] \sqrt{20} \: \: is \: between \: \: \: \: \: and \: \: \: [/tex]
[tex] \sqrt{26} \: \: is \: between \: \: \: and[/tex]
[tex] \sqrt{123} \: \: is \: between \: \: \: and[/tex]
[tex] \sqrt{214} \: \: is \: between \: \: \: and[/tex]




Sagot :

Step-by-step explanation:

\usepackage{amsmath}

\begin{document}

one centered formula, without label:

\begin{equation*}

a x^2 + b x + c = 0

\end{equation*}

one centered formula, with label:

\begin{equation}

a x^2 + b x + c = 0

\end{equation}

several centered formulas, without label:

\begin{gather*}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gather*}

several centered formulas, one label for all of them:

\begin{equation}

\begin{gathered}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gathered}

\end{equation}

several centered formulas, each with its own label

\begin{gather}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gather}

several formulas, any alignment, without label:

\begin{flalign*}

10xy^2+15x^2y-5xy & = 5\left(2xy^2+3x^2y-xy\right) = \\

& = 5x\left(2y^2+3xy-y\right) = \\

& = 5xy\left(2y+3x-1\right)

\end{flalign*}

several formulas, any alignment, each with its own label:

\begin{flalign}

10xy^2+15x^2y-5xy & = 5\left(2xy^2+3x^2y-xy\right) = \\

& = 5x\left(2y^2+3xy-y\right) = \\

& = 5xy\left(2y+3x-1\right)

\end{flalign}

several formulas, any alignment, one label for all of them

\begin{equation}

\begin{split}

10xy^2+15x^2y-5xy & = 5\left(2xy^2+3x^2y-xy\right) = \\

& = 5x\left(2y^2+3xy-y\right) = \\

& = 5xy\left(2y+3x-1\right)

\end{split}

\end{equation}

splitting a long formula on several lines. The first line is left-aligned, the last one is right-aligned, all the others are centered:.

\begin{multline}

\left(1+x\right)^n = 1 + nx + \frac{n\left(n-1\right)}{2!}x^2 +\\

+ \frac{n\left(n-1\right)\left(n-2\right)}{3!}x^3 +\\

+ \frac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)}{4!}x^4 + \dots

\end{multline}

subordinate numbering:

\begin{subequations}

\begin{gather}

a x + b = 0 \\

a x^2 + b x + c = 0 \\

a x^3 + b x^2 + c x + d = 0

\end{gather}

\end{subequations}

boxed formula:

\begin{equation*}

\boxed{a x^2 + b x + c = 0}

\end{equation*}

\end{document}