Kumonekta sa mga eksperto at makakuha ng mga sagot sa IDNStudy.com. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.
Sagot :
[tex]\large \bold {SOLUTION}[/tex]
[tex]\large\sf{y = ln( \cosh(2x) ) }[/tex]
[tex]\small\textsf{By the Chain Rule of differentiation, let u = cosh (2x)}[/tex]
[tex]\small\sf{(f[g(x)])' = f'[g(x)] \: \: • \: \: g'(x)}[/tex]
[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \:• \: \: \dfrac{d}{dx} \: \cosh(2x) }[/tex]
[tex]\small\textsf{Set aside the first term and differentiate the second term}[/tex]
[tex]\small\textsf{By the Chain Rule of differentiation, let u = 2x}[/tex]
[tex]\small\sf{ \dfrac{d}{du} \: \cosh(u) \: \: • \: \: \dfrac{d}{dx} \: 2x }[/tex]
[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(u) \: \: • \: \: 2 }[/tex]
[tex]\small\textsf{Return u = 2x as the substitution}[/tex]
[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]
[tex]\small\sf{y' = \dfrac{1}{u} \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]
[tex]\small\textsf{Return the main u-substitution}[/tex]
[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]
[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: 2\sinh(2x) }[/tex]
[tex]\therefore\small\sf{y' = ln( \cosh(2x) ) \implies\small\boxed{\green{\sf{ \frac{2 \sinh(2x) }{ \cosh(2x) } }}}}[/tex]
[tex]\small\textsf{\#AlwaysBeTheGreat}[/tex]
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.