Sumali sa IDNStudy.com at makakuha ng mga sagot ng eksperto. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
[tex]\large \bold {SOLUTION}[/tex]
[tex]\large\sf{y = ln( \cosh(2x) ) }[/tex]
[tex]\small\textsf{By the Chain Rule of differentiation, let u = cosh (2x)}[/tex]
[tex]\small\sf{(f[g(x)])' = f'[g(x)] \: \: • \: \: g'(x)}[/tex]
[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \:• \: \: \dfrac{d}{dx} \: \cosh(2x) }[/tex]
[tex]\small\textsf{Set aside the first term and differentiate the second term}[/tex]
[tex]\small\textsf{By the Chain Rule of differentiation, let u = 2x}[/tex]
[tex]\small\sf{ \dfrac{d}{du} \: \cosh(u) \: \: • \: \: \dfrac{d}{dx} \: 2x }[/tex]
[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(u) \: \: • \: \: 2 }[/tex]
[tex]\small\textsf{Return u = 2x as the substitution}[/tex]
[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]
[tex]\small\sf{y' = \dfrac{1}{u} \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]
[tex]\small\textsf{Return the main u-substitution}[/tex]
[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]
[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: 2\sinh(2x) }[/tex]
[tex]\therefore\small\sf{y' = ln( \cosh(2x) ) \implies\small\boxed{\green{\sf{ \frac{2 \sinh(2x) }{ \cosh(2x) } }}}}[/tex]
[tex]\small\textsf{\#AlwaysBeTheGreat}[/tex]
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Salamat sa iyong pagbisita at sa muling pagkikita.