Answered

Tuklasin ang mundo ng kaalaman at mga sagot mula sa komunidad sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.

what is the derivative of y=ln(cosh2x) :)

Sagot :

[tex]\large \bold {SOLUTION}[/tex]

[tex]\large\sf{y = ln( \cosh(2x) ) }[/tex]

[tex]\small\textsf{By the Chain Rule of differentiation, let u = cosh (2x)}[/tex]

[tex]\small\sf{(f[g(x)])' = f'[g(x)] \: \: • \: \: g'(x)}[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \:• \: \: \dfrac{d}{dx} \: \cosh(2x) }[/tex]

[tex]\small\textsf{Set aside the first term and differentiate the second term}[/tex]

[tex]\small\textsf{By the Chain Rule of differentiation, let u = 2x}[/tex]

[tex]\small\sf{ \dfrac{d}{du} \: \cosh(u) \: \: • \: \: \dfrac{d}{dx} \: 2x }[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(u) \: \: • \: \: 2 }[/tex]

[tex]\small\textsf{Return u = 2x as the substitution}[/tex]

[tex]\small\sf{y' = \dfrac{d}{du} \: ln(u) \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\sf{y' = \dfrac{1}{u} \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\textsf{Return the main u-substitution}[/tex]

[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: \sinh(2x) \: \: • \: \: 2 }[/tex]

[tex]\small\sf{y' = \dfrac{1}{ \cosh(2x) } \: \: • \: \: 2\sinh(2x) }[/tex]

[tex]\therefore\small\sf{y' = ln( \cosh(2x) ) \implies\small\boxed{\green{\sf{ \frac{2 \sinh(2x) }{ \cosh(2x) } }}}}[/tex]

[tex]\small\textsf{\#AlwaysBeTheGreat}[/tex]