Makakuha ng mabilis at pangkomunidad na mga sagot sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.

If the altitude of an equilateral triangle is 2 cm shorter than its side, find the length of its side.

Sagot :

use the illustration i've made as reference. (see attachment)
taking the left right triangle, we can use Pythagorean Theorem
[tex]x^2 = (\frac{x}{2})^2 + (x-2)^2 [/tex]
[tex]x^2 = \frac{x^2}{4} + (x^2 - 4x +4)[/tex]
[tex]x^2 = \frac{x^2}{4} + x^2 - 4x + 4[/tex]
multiply the whole equation with 4
[tex]4x^2 = x^2 + 4x^2 - 16x + 16[/tex]
transpose all the terms from left to right, equating it to zero
[tex]0=4x^2 - 4x^2 + x^2 - 16x + 16 [/tex]
or
[tex]4x^2-4x^2+x^2-16x+16=0[/tex]
[tex]x^2 - 16x + 16 = 0[/tex]
using quadratic formula
[tex]x = \frac{-b (+-) \sqrt{b^2-4ac} }{2a} [/tex]
a = 1
b = -16
c = 16
[tex]x = \frac{-(-16) (+-) \sqrt{(-16)^2-4(1)(16)} }{2(1)} [/tex]
[tex]x = \frac{16 (+-) \sqrt{256-64} }{2} [/tex]
[tex]x = \frac{16(+-) \sqrt{192} }{2}[/tex]
[tex]x = \frac{16(+-) \sqrt{64(3)} }{2}[/tex]
[tex]x = \frac{16(+-) 8\sqrt{3}}{2}[/tex]
[tex]x = 8 (+-) 4 \sqrt{3}[/tex]
[tex]x_1 = 8 + 4 \sqrt{3}[/tex]
or
[tex]x_1 = 14.9282 units[/tex]
[tex]x_2 = 8 - 4\sqrt {3}[/tex]
or
[tex]x_2 = 1.0718 units[/tex]
therefore you can have the value of the side as 14.9282 units and/or 1.0718 units
View image Shinalcantara