IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga sagot ng eksperto. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

the product of two numbers is 8 and their difference is 6. find the numbers.

Sagot :

[tex]the \ first\ number : \ x \\the \ second \ number : \ y \\\\ \begin{cases}x\cdot y =8 \\ x-y= 6 \end{cases} \\\\ \begin{cases}x\cdot y =8 \\ x = 6 + y \end{cases} \\\\ \begin{cases}x\cdot y(6+y)=8 \\ x = 6 + y \end{cases}[/tex]

[tex]y(6+y) =8 \\6y+y^2=8\\ y^2+6y-8=0\\a=1,\ \ b=6, \ \ c=-8\\\\y_{1}=\frac{-b-\sqrt{b^{2}-4ac}}{2a} =\frac{-6-\sqrt{6^2-4\cdot 1\cdot (-8)}}{2}= \frac{-6-\sqrt{36+32}}{2}=\frac{-6-\sqrt{68}}{2}=\\\\=\frac{-6-\sqrt{4\cdot 17}}{2}=\frac{-6-2\sqrt{17}}{2}=\frac{-2(3+\sqrt{17})}{2}=-(3+\sqrt{17})[/tex]

[tex]y_{2}=\frac{-b+\sqrt{b^{2}-4ac}}{2a} =\frac{-6+\sqrt{6^2-4\cdot 1\cdot (-8)}}{2}=\frac{2(-3+\sqrt{17})}{2}= \sqrt{17}-3 \\\\\begin{cases}x\cdot y =8 \\ y=-(3+\sqrt{17} )\end{cases} \ \ \ or \ \ \ \begin{cases}x\cdot y =8 \\ y= \sqrt{17}-3 \end{cases} \\\\ \begin{cases}x\cdot -( 3+\sqrt{17}) =8 \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x\cdot ( \sqrt{17}-3) =8 \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x =\frac{8}{-(3+\sqrt{17})} \\ y=-3-\sqrt{17} \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 } \\ y=\sqrt{17}-3 \end{cases}\\\\ \begin{cases}x =\frac{8}{-(3+\sqrt{17})} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 } \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x =\frac{8}{-(3+\sqrt{17})}*\frac{3-\sqrt{17}}{3-\sqrt{17}} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 }*\frac{\sqrt{17}+3}{\sqrt{17}+3} \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x = \frac{8(3-\sqrt{17})}{-(9-17)} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3)}{17-9} \\ y=\sqrt{17}- 3\end{cases}\\\\\begin{cases}x = \frac{8(3-\sqrt{17}) }{8 } \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3) }{8} \\ y=\sqrt{17}- 3\end{cases}\\\\\begin{cases}x = \frac{8(3-\sqrt{17}) }{8 } \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3)}{8} \\ y=\sqrt{17}- 3\end{cases}[/tex]

[tex]\begin{cases}x = 3-\sqrt{17} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \sqrt{17}+3 \\ y=\sqrt{17}- 3\end{cases}[/tex]