Makakuha ng maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

the product of two numbers is 8 and their difference is 6. find the numbers.

Sagot :

[tex]the \ first\ number : \ x \\the \ second \ number : \ y \\\\ \begin{cases}x\cdot y =8 \\ x-y= 6 \end{cases} \\\\ \begin{cases}x\cdot y =8 \\ x = 6 + y \end{cases} \\\\ \begin{cases}x\cdot y(6+y)=8 \\ x = 6 + y \end{cases}[/tex]

[tex]y(6+y) =8 \\6y+y^2=8\\ y^2+6y-8=0\\a=1,\ \ b=6, \ \ c=-8\\\\y_{1}=\frac{-b-\sqrt{b^{2}-4ac}}{2a} =\frac{-6-\sqrt{6^2-4\cdot 1\cdot (-8)}}{2}= \frac{-6-\sqrt{36+32}}{2}=\frac{-6-\sqrt{68}}{2}=\\\\=\frac{-6-\sqrt{4\cdot 17}}{2}=\frac{-6-2\sqrt{17}}{2}=\frac{-2(3+\sqrt{17})}{2}=-(3+\sqrt{17})[/tex]

[tex]y_{2}=\frac{-b+\sqrt{b^{2}-4ac}}{2a} =\frac{-6+\sqrt{6^2-4\cdot 1\cdot (-8)}}{2}=\frac{2(-3+\sqrt{17})}{2}= \sqrt{17}-3 \\\\\begin{cases}x\cdot y =8 \\ y=-(3+\sqrt{17} )\end{cases} \ \ \ or \ \ \ \begin{cases}x\cdot y =8 \\ y= \sqrt{17}-3 \end{cases} \\\\ \begin{cases}x\cdot -( 3+\sqrt{17}) =8 \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x\cdot ( \sqrt{17}-3) =8 \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x =\frac{8}{-(3+\sqrt{17})} \\ y=-3-\sqrt{17} \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 } \\ y=\sqrt{17}-3 \end{cases}\\\\ \begin{cases}x =\frac{8}{-(3+\sqrt{17})} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 } \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x =\frac{8}{-(3+\sqrt{17})}*\frac{3-\sqrt{17}}{3-\sqrt{17}} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8}{\sqrt{17}-3 }*\frac{\sqrt{17}+3}{\sqrt{17}+3} \\ y=\sqrt{17}-3 \end{cases}[/tex]

[tex]\begin{cases}x = \frac{8(3-\sqrt{17})}{-(9-17)} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3)}{17-9} \\ y=\sqrt{17}- 3\end{cases}\\\\\begin{cases}x = \frac{8(3-\sqrt{17}) }{8 } \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3) }{8} \\ y=\sqrt{17}- 3\end{cases}\\\\\begin{cases}x = \frac{8(3-\sqrt{17}) }{8 } \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \frac{8(\sqrt{17}+3)}{8} \\ y=\sqrt{17}- 3\end{cases}[/tex]

[tex]\begin{cases}x = 3-\sqrt{17} \\ y=-(3+\sqrt{17}) \end{cases} \ \ \ or \ \ \ \begin{cases}x= \sqrt{17}+3 \\ y=\sqrt{17}- 3\end{cases}[/tex]