IDNStudy.com, ang iyong platform ng sanggunian para sa malinaw na mga sagot. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

the sum of the digit of a 2 digit number is 11. if the digit is reversed the resulting number is seven more than twice the original number. what is the original number



Sagot :

Original number   sum of digits  twice the orig#+7   reversed   
29                         11                  65                       ≠   92
38                         11                  83                       =  83
38 is my final answer
let 'x' be at the tens place of the two-digit number
    'y' be at the ones place of the two-digit number
then the number would be x(10) + y
why i multiply x by 10? it's in the tens place remember? then the value would be multiplied by 10
since the sum of the two is 11 then you'll have it as:
x + y = 11  ---equation 1
for the second statement you'll have the equivalent mathematical statement as:
y(10) + x = 2(x(10) + y) + 7
10y + x = 20x + 2y + 7
10y - 2y = 20x - x + 7
8y = 19x + 7  ----equation 2
rearranging equation 1 you'll have
x + y =11
y = 11 - x  ---equation 3
substitute equation 3 to equation 2
8y = 19x + 7
8(11-x) = 19x + 7
88 - 8x = 19x +7
19x + 8x = 88 - 7
27x = 81
x = 3
substituting the value of x to equation 3 you'll have
y = 11 - x
y = 11 - 3
y = 8
the original number is defined by 10x + y as stated above then you'll have it as:
10x + y = 10(3) + 8 
            = 38
therefore the original number is 38